Information spaces for mobile robots

Planning with sensing uncertainty is central to robotics. Sensor limitations often prevent accurate state estimation of the robot. Two general approaches can be taken for solving robotics tasks given sensing uncertainty. The first approach is to estimate the state and to solve the given task using the estimate as the real state. However, estimation of the state may sometimes be harder than solving the original task. The other approach is to avoid estimation of the state, which can be achieved by defining the information space, the space of all histories of actions and sensing observations of a robot system. Considering information spaces brings better understanding of problems involving uncertainty, and also allows finding better solutions to such problems. In this paper we give a brief description of the information space framework, followed by its use in some robotic tasks.

[1]  Ehud Rivlin,et al.  Range-sensor based navigation in three dimensions , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[2]  Bruce Randall Donald,et al.  On Information Invariants in Robotics , 1995, Artif. Intell..

[3]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[4]  Steven M. LaValle,et al.  Bitbots: Simple Robots Solving Complex Tasks , 2005, AAAI.

[5]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[6]  Leonidas J. Guibas,et al.  Visibility and intersection problems in plane geometry , 1989, Discret. Comput. Geom..

[7]  Gregory Dudek,et al.  Localizing a robot with minimum travel , 1995, SODA '95.

[8]  Jason M. O'Kane,et al.  Almost-Sensorless Localization , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[9]  Steven M. LaValle,et al.  Optimal navigation and object finding without geometric maps or localization , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[10]  Steven M. LaValle,et al.  A pursuit-evasion BUG algorithm , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[12]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[13]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[14]  Wenju Liu,et al.  A Model Approximation Scheme for Planning in Partially Observable Stochastic Domains , 1997, J. Artif. Intell. Res..

[15]  Steven M. LaValle,et al.  Visibility-based pursuit-evasion: the case of curved environments , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[16]  Leonidas J. Guibas,et al.  The Robot Localization Problem , 1995, SIAM J. Comput..

[17]  Michael A. Erdmann,et al.  Understanding Action and Sensing by Designing Action-Based Sensors , 1995, Int. J. Robotics Res..

[18]  Kenneth Y. Goldberg,et al.  Orienting polygonal parts without sensors , 1993, Algorithmica.

[19]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[20]  J. Koenderink,et al.  The singularities of the visual mapping , 1976, Biological Cybernetics.

[21]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[22]  Steven M. LaValle,et al.  Algorithms for Planning under Uncertainty in Prediction and Sensing , 2006, Autonomous Mobile Robots.

[23]  Leonidas J. Guibas,et al.  Visibility-Based Pursuit-Evasion in a Polygonal Environment , 1997, WADS.

[24]  Bruce Randall Donald Planning Multi-Step Error Detection and Recovery Strategies , 1990, Int. J. Robotics Res..

[25]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[26]  Frédo Durand,et al.  3d visibility: analytical study and applications , 1999 .

[27]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[28]  Steven M. LaValle,et al.  Gap Navigation Trees: Minimal Representation for Visibility-based Tasks , 2004, WAFR.

[29]  Steven M. LaValle,et al.  Pursuit-evasion in an unknown environment using gap navigation trees , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).