Optimizing locomotion controllers using biologically-based actuators and objectives

We present a technique for automatically synthesizing walking and running controllers for physically-simulated 3D humanoid characters. The sagittal hip, knee, and ankle degrees-of-freedom are actuated using a set of eight Hill-type musculotendon models in each leg, with biologically-motivated control laws. The parameters of these control laws are set by an optimization procedure that satisfies a number of locomotion task terms while minimizing a biological model of metabolic energy expenditure. We show that the use of biologically-based actuators and objectives measurably increases the realism of gaits generated by locomotion controllers that operate without the use of motion capture data, and that metabolic energy expenditure provides a simple and unifying measurement of effort that can be used for both walking and running control optimization.

[1]  Keith Waters,et al.  A muscle model for animation three-dimensional facial expression , 1987, SIGGRAPH.

[2]  R. Blickhan The spring-mass model for running and hopping. , 1989, Journal of biomechanics.

[3]  F. Zajac Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. , 1989, Critical reviews in biomedical engineering.

[4]  M P Kadaba,et al.  Measurement of lower extremity kinematics during level walking , 1990, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[5]  Jessica K. Hodgins,et al.  Animation of dynamic legged locomotion , 1991, SIGGRAPH.

[6]  H. Skinner,et al.  Return of normal gait patterns after anterior cruciate ligament reconstruction , 1993, The American journal of sports medicine.

[7]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[8]  Demetri Terzopoulos,et al.  Realistic modeling for facial animation , 1995, SIGGRAPH.

[9]  Eugene Fiume,et al.  Limit cycle control and its application to the animation of balancing and walking , 1996, SIGGRAPH.

[10]  Novacheck,et al.  The biomechanics of running. , 1998, Gait & posture.

[11]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[12]  M. Pandy,et al.  A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions. , 1999, Computer methods in biomechanics and biomedical engineering.

[13]  M. Pandy,et al.  Dynamic optimization of human walking. , 2001, Journal of biomechanical engineering.

[14]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[15]  A. Kuo A simple model of bipedal walking predicts the preferred speed-step length relationship. , 2001, Journal of biomechanical engineering.

[16]  S. Rethlefsen,et al.  Outcome of Medial Versus Combined Medial and Lateral Hamstring Lengthening Surgery in Cerebral Palsy , 2002, Journal of pediatric orthopedics.

[17]  Sahan Gamage,et al.  New least squares solutions for estimating the average centre of rotation and the axis of rotation. , 2002, Journal of biomechanics.

[18]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[19]  Kazunori Hase,et al.  Human gait simulation with a neuromusculoskeletal model and evolutionary computation , 2003, Comput. Animat. Virtual Worlds.

[20]  D Gordon E Robertson,et al.  Design and responses of Butterworth and critically damped digital filters. , 2003, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology.

[21]  Reinhard Blickhan,et al.  Positive force feedback in bouncing gaits? , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  M. Pandy,et al.  A phenomenological model for estimating metabolic energy consumption in muscle contraction. , 2004, Journal of biomechanics.

[23]  Gentaro Taga,et al.  A model of the neuro-musculo-skeletal system for human locomotion , 1995, Biological Cybernetics.

[24]  C. Karen Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, ACM Trans. Graph..

[25]  Ronald Fedkiw,et al.  Automatic determination of facial muscle activations from sparse motion capture marker data , 2005, ACM Trans. Graph..

[26]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[27]  Victor B. Zordan,et al.  Breathe easy: Model and control of human respiration for computer animation , 2006, Graph. Model..

[28]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[29]  Manoj Srinivasan,et al.  Computer optimization of a minimal biped model discovers walking and running , 2006, Nature.

[30]  Demetri Terzopoulos,et al.  Heads up!: biomechanical modeling and neuromuscular control of the neck , 2006, SIGGRAPH 2006.

[31]  Toshiharu Yokozawa,et al.  Muscle activities of the lower limb during level and uphill running. , 2007, Journal of biomechanics.

[32]  M. V. D. Panne,et al.  SIMBICON: simple biped locomotion control , 2007, SIGGRAPH 2007.

[33]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[34]  May Q. Liu,et al.  Muscle contributions to support and progression over a range of walking speeds. , 2008, Journal of biomechanics.

[35]  Dinesh K. Pai,et al.  Musculotendon simulation for hand animation , 2008, SIGGRAPH 2008.

[36]  Ronald Fedkiw,et al.  Impulse-Based Control of Joints and Muscles , 2008, IEEE Transactions on Visualization and Computer Graphics.

[37]  C. Karen Liu,et al.  Optimization-based interactive motion synthesis , 2009, ACM Trans. Graph..

[38]  David J. Fleet,et al.  Optimizing walking controllers , 2009, ACM Trans. Graph..

[39]  Philippe Beaudoin,et al.  Robust task-based control policies for physics-based characters , 2009, SIGGRAPH 2009.

[40]  Eftychios Sifakis,et al.  Comprehensive biomechanical modeling and simulation of the upper body , 2009, TOGS.

[41]  Zoran Popović,et al.  Contact-aware nonlinear control of dynamic characters , 2009, SIGGRAPH 2009.

[42]  David J. Fleet,et al.  Optimizing walking controllers for uncertain inputs and environments , 2010, ACM Trans. Graph..

[43]  M. van de Panne,et al.  Generalized biped walking control , 2010, ACM Trans. Graph..

[44]  Taesoo Kwon,et al.  Control systems for human running using an inverted pendulum model and a reference motion capture sequence , 2010, SCA '10.

[45]  K. Mombaur,et al.  Modeling and Optimal Control of Human-Like Running , 2010, IEEE/ASME Transactions on Mechatronics.

[46]  Zoran Popovic,et al.  Terrain-adaptive bipedal locomotion control , 2010, ACM Transactions on Graphics.

[47]  Sungeun Kim,et al.  Data-driven biped control , 2010, ACM Trans. Graph..

[48]  Martin de Lasa,et al.  Feature-based locomotion controllers , 2010, ACM Trans. Graph..

[49]  Aaron Hertzmann,et al.  Feature-based locomotion controllers , 2010, SIGGRAPH 2010.

[50]  Ajay Seth,et al.  Muscle contributions to propulsion and support during running. , 2010, Journal of biomechanics.

[51]  Martin de Lasa,et al.  Robust physics-based locomotion using low-dimensional planning , 2010, ACM Trans. Graph..

[52]  S. Delp,et al.  Muscle contributions to support and progression during single-limb stance in crouch gait. , 2010, Journal of biomechanics.

[53]  Marko Ackermann,et al.  Optimality principles for model-based prediction of human gait. , 2010, Journal of biomechanics.

[54]  C. Karen Liu,et al.  Optimal feedback control for character animation using an abstract model , 2010, ACM Trans. Graph..

[55]  Alfred D. Grant Gait Analysis: Normal and Pathological Function , 2010 .

[56]  Philippe Beaudoin,et al.  Generalized biped walking control , 2010, SIGGRAPH 2010.

[57]  J. Perry,et al.  Comprar Gait analysis. Normal and pathological function | Burnfield, J. | 9781556427664 | Slack Incorporated , 2010 .

[58]  Hartmut Geyer,et al.  A Muscle-Reflex Model That Encodes Principles of Legged Mechanics Produces Human Walking Dynamics and Muscle Activities , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[59]  C. Karen Liu,et al.  Controlling physics-based characters using soft contacts , 2011, ACM Trans. Graph..

[60]  Michael A Sherman,et al.  Simbody: multibody dynamics for biomedical research. , 2011, Procedia IUTAM.

[61]  Katsu Yamane,et al.  A neuromuscular locomotion controller that realizes human-like responses to unexpected disturbances , 2011, 2011 IEEE International Conference on Robotics and Automation.

[62]  Jeffrey A Reinbolt,et al.  OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. , 2011, Procedia IUTAM.