Multi-robot repeated area coverage

We address the problem of repeated coverage of a target area, of any polygonal shape, by a team of robots having a limited visual range. Three distributed Cluster-based algorithms, and a method called Cyclic Coverage are introduced for the problem. The goal is to evaluate the performance of the repeated coverage algorithms under the effects of the variables: Environment Representation, and the Robots’ Visual Range. A comprehensive set of performance metrics are considered, including the distance the robots travel, the frequency of visiting points in the target area, and the degree of balance in workload distribution among the robots. The Cyclic Coverage approach, used as a benchmark to compare the algorithms, produces optimal or near-optimal solutions for the single robot case under some criteria. The results can be used as a framework for choosing an appropriate combination of repeated coverage algorithm, environment representation, and the robots’ visual range based on the particular scenario and the metric to be optimized.

[1]  Peter Stone,et al.  A multi-robot system for continuous area sweeping tasks , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[2]  Nikolaus Correll,et al.  Distributed boundary coverage with a team of networked miniature robots using a robust market-based algorithm , 2008, Annals of Mathematics and Artificial Intelligence.

[3]  Xiaolei Ma,et al.  Vehicle Routing Problem , 2013 .

[4]  Günther Schmidt,et al.  Path planning and guidance techniques for an autonomous mobile cleaning robot , 1995, Robotics Auton. Syst..

[5]  Svante Carlsson,et al.  Finding the Shortest Watchman Route in a Simple Polygon , 1993, ISAAC.

[6]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[7]  Noam Hazon,et al.  On redundancy, efficiency, and robustness in coverage for multiple robots , 2008, Robotics Auton. Syst..

[8]  Sonal Jain,et al.  Multi-robot forest coverage , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Steven Skiena,et al.  The Algorithm Design Manual , 2020, Texts in Computer Science.

[10]  Jorge Urrutia,et al.  Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.

[11]  Antonis A. Argyros,et al.  Fast positioning of limited-visibility guards for the inspection of 2D workspaces , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Yi Guo,et al.  Collaborative Robots for Infrastructure Security Applications , 2007, Mobile Robots.

[13]  Steven M. LaValle,et al.  Visibility-based pursuit-evasion: the case of curved environments , 2001, IEEE Trans. Robotics Autom..

[14]  Alan K. Mackworth,et al.  The effects of communication and visual range on multi-robot repeated boundary coverage , 2012, 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[15]  Simeon C. Ntafos,et al.  Optimum watchman routes , 1986, SCG '86.

[16]  Alan K. Mackworth,et al.  Multi-robot repeated boundary coverage under uncertainty , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[17]  Elon Rimon,et al.  Spanning-tree based coverage of continuous areas by a mobile robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[18]  William J. Cook,et al.  Chained Lin-Kernighan for Large Traveling Salesman Problems , 2003, INFORMS Journal on Computing.

[19]  Jurek Czyzowicz,et al.  Boundary Patrolling by Mobile Agents with Distinct Maximal Speeds , 2011, ESA.

[20]  Fuh-Hwa Liu,et al.  A Method for Vehicle Routing Problem with Multiple Vehicle Types and Time Windows , 1999 .

[21]  Gaurav S. Sukhatme,et al.  Task-Allocation and Coordination of Multiple Robots for Planetary Exploration , 2001 .

[22]  Philippe Pasquier,et al.  Complete and robust cooperative robot area coverage with limited range , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics) , 2007 .

[24]  Wolfram Burgard,et al.  Collaborative multi-robot exploration , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[25]  Noa Agmon,et al.  The giving tree: constructing trees for efficient offline and online multi-robot coverage , 2008, Annals of Mathematics and Artificial Intelligence.

[26]  Craig A. Tovey,et al.  New Results on the Old k-opt Algorithm for the Traveling Salesman Problem , 1999, SIAM J. Comput..

[27]  Leonidas J. Guibas,et al.  Finding an unpredictable target in a workspace with obstacles , 1997, Proceedings of International Conference on Robotics and Automation.

[28]  Edward W. Felten,et al.  Large-Step Markov Chains for the Traveling Salesman Problem , 1991, Complex Syst..

[29]  Paolo Toth,et al.  Models, relaxations and exact approaches for the capacitated vehicle routing problem , 2002, Discret. Appl. Math..

[30]  Christopher M. Clark,et al.  Multi-robot boundary tracking with phase and workload balancing , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  J.K. Hedrick,et al.  Border patrol and surveillance missions using multiple unmanned air vehicles , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[32]  Yehuda Elmaliach,et al.  A realistic model of frequency-based multi-robot polyline patrolling , 2008, AAMAS.

[33]  Maria L. Gini,et al.  Sustainable multi-robot patrol of an open polyline , 2011, 2011 IEEE International Conference on Robotics and Automation.

[34]  Sarit Kraus,et al.  Multi-robot perimeter patrol in adversarial settings , 2008, 2008 IEEE International Conference on Robotics and Automation.

[35]  Andrew Howard,et al.  Multi-robot Simultaneous Localization and Mapping using Particle Filters , 2005, Int. J. Robotics Res..

[36]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[37]  Eli Packer,et al.  Computing Multiple Watchman Routes , 2008, WEA.

[38]  Noa Agmon,et al.  Multi-robot area patrol under frequency constraints , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[39]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[40]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[41]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[42]  Xuehou Tan,et al.  Fast computation of shortest watchman routes in simple polygons , 2001, Inf. Process. Lett..

[43]  Bohdana Ratitch,et al.  Multi-agent patrolling with reinforcement learning , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[44]  L. Paul Chew,et al.  Constrained Delaunay triangulations , 1987, SCG '87.

[45]  Howie Choset,et al.  Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.

[46]  Borut Zalik,et al.  A universal trapezoidation algorithm for planar polygons , 1999, Comput. Graph..

[47]  G. Whelan,et al.  Cooperative search and rescue with a team of mobile robots , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[48]  S. Shankar Sastry,et al.  Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation , 2002, IEEE Trans. Robotics Autom..

[49]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[50]  Gaurav S. Sukhatme,et al.  A framework for multi-robot node coverage in sensor networks , 2008, Annals of Mathematics and Artificial Intelligence.

[51]  Sarit Kraus,et al.  Uncertainties in adversarial patrol , 2009, AAMAS.

[52]  Wolfram Burgard,et al.  Coordination for Multi-Robot Exploration and Mapping , 2000, AAAI/IAAI.

[53]  Alexis Drogoul,et al.  Multi-agent Patrolling: An Empirical Analysis of Alternative Architectures , 2002, MABS.

[54]  António Leslie Bajuelos,et al.  Quadratic-Time Linear-Space Algorithms for Generating Orthogonal Polygons with a Given Number of Vertices , 2004, ICCSA.

[55]  Joel W. Burdick,et al.  Multi-robot boundary coverage with plan revision , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[56]  Eli Packer,et al.  Robust geometric computing and optimal visibility coverage , 2008 .

[57]  Philippe Pasquier,et al.  Multi-robot area coverage with limited visibility , 2010, AAMAS.

[58]  Sebastian Thrun,et al.  Visibility-based Pursuit-evasion with Limited Field of View , 2004, Int. J. Robotics Res..

[59]  Gaurav S. Sukhatme,et al.  Efficient exploration without localization , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[60]  Edward W. Felten,et al.  Large-step markov chains for the TSP incorporating local search heuristics , 1992, Oper. Res. Lett..

[61]  Libor Preucil,et al.  A Sensor Placement Algorithm for a Mobile Robot Inspection Planning , 2011, J. Intell. Robotic Syst..

[62]  Svante Carlsson,et al.  Optimum Guard Covers and m-Watchmen Routes for Restricted Polygons , 1991, WADS.

[63]  Martin Desrochers,et al.  A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows , 1990, Oper. Res..

[64]  Sarit Kraus,et al.  The impact of adversarial knowledge on adversarial planning in perimeter patrol , 2008, AAMAS.

[65]  Jun Ota,et al.  Cooperative sweeping by multiple mobile robots with relocating portable obstacles , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[66]  Sarit Kraus,et al.  Adversarial Uncertainty in Multi-Robot Patrol , 2009, IJCAI.

[67]  Keld Helsgaun,et al.  General k-opt submoves for the Lin–Kernighan TSP heuristic , 2009, Math. Program. Comput..

[68]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[69]  Jacques Wainer,et al.  Probabilistic Multiagent Patrolling , 2008, SBIA.

[70]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[71]  G. Swaminathan Robot Motion Planning , 2006 .

[72]  Yann Chevaleyre,et al.  Recent Advances on Multi-agent Patrolling , 2004, SBIA.

[73]  Brian Yamauchi,et al.  Frontier-based exploration using multiple robots , 1998, AGENTS '98.

[74]  Howie Choset,et al.  Efficient Boustrophedon Multi-Robot Coverage: an algorithmic approach , 2008, Annals of Mathematics and Artificial Intelligence.

[75]  Jan Faigl,et al.  Approximate Solution of the Multiple Watchman Routes Problem With Restricted Visibility Range , 2010, IEEE Transactions on Neural Networks.

[76]  Gaurav S. Sukhatme,et al.  Spreading Out: A Local Approach to Multi-robot Coverage , 2002, DARS.