Autonomous navigation for urban service mobile robots

We present to the robotic community a fully autonomous navigation solution for mobile robots operating in urban pedestrian areas. We introduce our robots and the experimental zone, overview the architecture of the navigation framework, and present the results after 3.5km of autonomous navigation. We expose the main lessons learnt by the scientific team and identify the issues to improve future works.

[1]  Dirk Haehnel,et al.  Junior: The Stanford entry in the Urban Challenge , 2008 .

[2]  Michael Himmelsbach,et al.  Autonomous Offroad Navigation Under Poor GPS Conditions , 2009 .

[3]  Alberto Sanfeliu,et al.  Real-Time Software for Mobile Robot Simulation and Experimentation in Cooperative Environments , 2008, SIMPAR.

[4]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[5]  Andreu Corominas Murtra,et al.  Geographical information systems for map based navigation in urban environments , 2009, Robotics Auton. Syst..

[6]  Sebastian Thrun,et al.  Map-Based Precision Vehicle Localization in Urban Environments , 2007, Robotics: Science and Systems.

[7]  Roland Philippsen Motion planning and obstacle avoidance for mobile robots in highly cluttered dynamic environments , 2004 .

[8]  Giorgio Metta,et al.  YARP: Yet Another Robot Platform , 2006 .

[9]  Bruce Randall Donald,et al.  Algorithmic and Computational Robotics: New Directions , 2001 .

[10]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[11]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[12]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[13]  Reid G. Simmons,et al.  The curvature-velocity method for local obstacle avoidance , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[14]  Javier Minguez,et al.  Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios , 2004, IEEE Transactions on Robotics and Automation.

[15]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[16]  Sebastian Thrun,et al.  Junior: The Stanford entry in the Urban Challenge , 2008, J. Field Robotics.