Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior

Intracellular recording allows measurement and perturbation of the membrane potential of identified neurons with sub-millisecond and sub-millivolt precision. This gives intracellular recordings a unique capacity to provide rich information about individual cells (e.g., high-resolution characterization of inputs, outputs, excitability, and structure). Hence, such recordings can elucidate the mechanisms that underlie fundamental phenomena, such as brain state, sparse coding, gating, gain modulation, and learning. Technical developments have increased the range of behaviors during which intracellular recording methods can be employed, such as in freely moving animals and head-fixed animals actively performing tasks, including in virtual environments. Such advances, and the combination of intracellular recordings with genetic and imaging techniques, have enabled investigation of the mechanisms that underlie neural computations during natural and trained behaviors.

[1]  Michael A Long,et al.  Intracellular recording in behaving animals , 2012, Current Opinion in Neurobiology.

[2]  M. Quirk,et al.  Experience-Dependent Asymmetric Shape of Hippocampal Receptive Fields , 2000, Neuron.

[3]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[4]  G. Laurent,et al.  Normalization for Sparse Encoding of Odors by a Wide-Field Interneuron , 2011, Science.

[5]  Charles J. Wilson,et al.  Spontaneous firing patterns of identified spiny neurons in the rat neostriatum , 1981, Brain Research.

[6]  Doyun Lee,et al.  Anesthetized- and awake-patched whole-cell recordings in freely moving rats using UV-cured collar-based electrode stabilization , 2014, Nature Protocols.

[7]  C. Petersen,et al.  Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal-Directed Behavior , 2015, Neuron.

[8]  J. Magee,et al.  Pathway Interactions and Synaptic Plasticity in the Dendritic Tuft Regions of CA1 Pyramidal Neurons , 2009, Neuron.

[9]  Michael A Long,et al.  Motor Origin of Precise Synaptic Inputs onto Forebrain Neurons Driving a Skilled Behavior , 2015, The Journal of Neuroscience.

[10]  Michael Brecht,et al.  Barrel Cortex Membrane Potential Dynamics in Social Touch , 2015, Neuron.

[11]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[12]  O D Creutzfeldt,et al.  Whole cell recording and conductance measurements in cat visual cortex in-vivo. , 1991, Neuroreport.

[13]  M. Häusser,et al.  Cellular mechanisms of spatial navigation in the medial entorhinal cortex , 2013, Nature Neuroscience.

[14]  Mark C. W. van Rossum,et al.  Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output , 2015, Cell reports.

[15]  Cheng Lyu,et al.  Quantitative Predictions Orchestrate Visual Signaling in Drosophila , 2017, Cell.

[16]  Nathalie L Rochefort,et al.  Functional mapping of single spines in cortical neurons in vivo , 2011, Nature.

[17]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[18]  Lisa M. Giocomo,et al.  Computational Models of Grid Cells , 2011, Neuron.

[19]  E. Kandel,et al.  Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. , 1961, Journal of neurophysiology.

[20]  C. Hansel,et al.  SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells , 2012, Neuron.

[21]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[22]  R. Traub,et al.  Axo-Axonal Coupling A Novel Mechanism for Ultrafast Neuronal Communication , 2001, Neuron.

[23]  Simon D. Fisher,et al.  Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo , 2017, Nature Communications.

[24]  Michael Brecht,et al.  In vivo dual intra- and extracellular recordings suggest bidirectional coupling between CA1 pyramidal neurons. , 2012, Journal of neurophysiology.

[25]  Jean-Michel Deniau,et al.  Distinct Patterns of Striatal Medium Spiny Neuron Activity during the Natural Sleep–Wake Cycle , 2006, The Journal of Neuroscience.

[26]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[27]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[28]  Katie C. Bittner,et al.  Behavioral time scale synaptic plasticity underlies CA1 place fields , 2017, Science.

[29]  Randy M. Bruno,et al.  Effects and Mechanisms of Wakefulness on Local Cortical Networks , 2011, Neuron.

[30]  J. Knierim,et al.  Spatial Representations of Granule Cells and Mossy Cells of the Dentate Gyrus , 2017, Neuron.

[31]  D. Johnston,et al.  Foundations of Cellular Neurophysiology , 1994 .

[32]  Lisa M. Giocomo,et al.  Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after‐spike dynamics , 2012, Hippocampus.

[33]  C. Petersen,et al.  Correlating whisker behavior with membrane potential in barrel cortex of awake mice , 2006, Nature Neuroscience.

[34]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[35]  J. Csicsvari,et al.  Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice In Vivo , 2017, Neuron.

[36]  Albert K. Lee,et al.  Whole-Cell Recordings in Freely Moving Rats , 2006, Neuron.

[37]  George H. Denfield,et al.  Pupil Fluctuations Track Fast Switching of Cortical States during Quiet Wakefulness , 2014, Neuron.

[38]  D. Tank,et al.  Intracellular dynamics of hippocampal place cells during virtual navigation , 2009, Nature.

[39]  Yangfan Peng,et al.  Functional Diversity of Subicular Principal Cells during Hippocampal Ripples , 2015, The Journal of Neuroscience.

[40]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[41]  Susumu Tonegawa,et al.  Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons , 2015, Nature Neuroscience.

[42]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[43]  M. Brecht,et al.  Pyramidal and Stellate Cell Specificity of Grid and Border Representations in Layer 2 of Medial Entorhinal Cortex , 2014, Neuron.

[44]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[45]  Suhasa B Kodandaramaiah,et al.  Assembly and operation of the autopatcher for automated intracellular neural recording in vivo , 2016, Nature Protocols.

[46]  K. Deisseroth,et al.  Optogenetic stimulation of a hippocampal engram activates fear memory recall , 2012, Nature.

[47]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[48]  Sandro Romani,et al.  Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells , 2017, Nature Neuroscience.

[49]  Jens Kremkow,et al.  In Vivo Monosynaptic Excitatory Transmission between Layer 2 Cortical Pyramidal Neurons , 2015, Cell reports.

[50]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[51]  Berthold Hedwig,et al.  A corollary discharge maintains auditory sensitivity during sound production , 2002, Nature.

[52]  Mu-ming Poo,et al.  Self-Control in Decision-Making Involves Modulation of the vmPFC Valuation System , 2012 .

[53]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[54]  Aurélie Pala,et al.  In Vivo Measurement of Cell-Type-Specific Synaptic Connectivity and Synaptic Transmission in Layer 2/3 Mouse Barrel Cortex , 2015, Neuron.

[55]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[56]  S. Hestrin,et al.  Subthreshold Mechanisms Underlying State-Dependent Modulation of Visual Responses , 2013, Neuron.

[57]  A. Hodgkin,et al.  Measurement of current‐voltage relations in the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[58]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[59]  J. Kauer,et al.  Whole-Cell Patch-Clamp Recording Reveals Subthreshold Sound-Evoked Postsynaptic Currents in the Inferior Colliculus of Awake Bats , 1996, The Journal of Neuroscience.

[60]  Michael Z. Lin,et al.  Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo , 2016, Cell.

[61]  Athanassios G. Siapas,et al.  Membrane Potential Dynamics of CA1 Pyramidal Neurons during Hippocampal Ripples in Awake Mice , 2016, Neuron.

[62]  Yuzhi Chen,et al.  Sensory stimulation shifts visual cortex from synchronous to asynchronous states , 2014, Nature.

[63]  D. Tank,et al.  Membrane potential dynamics of grid cells , 2013, Nature.

[64]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[65]  E. Fetz,et al.  Synaptic Interactions between Primate Precentral Cortex Neurons Revealed by Spike-Triggered Averaging of Intracellular Membrane Potentials In Vivo , 1996, The Journal of Neuroscience.

[66]  Eberhard E Fetz,et al.  Characteristic membrane potential trajectories in primate sensorimotor cortex neurons recorded in vivo. , 2005, Journal of neurophysiology.

[67]  M. Häusser,et al.  Synaptic representation of locomotion in single cerebellar granule cells , 2015, eLife.

[68]  Richard Hans Robert Hahnloser,et al.  An ultra-sparse code underliesthe generation of neural sequences in a songbird , 2002, Nature.

[69]  H. Seung,et al.  In vivo intracellular recording and perturbation of persistent activity in a neural integrator , 2001, Nature Neuroscience.

[70]  Bruce R Donald,et al.  Auditory synapses to song premotor neurons are gated off during vocalization in zebra finches , 2014, eLife.

[71]  D. McCormick,et al.  Waking State: Rapid Variations Modulate Neural and Behavioral Responses , 2015, Neuron.

[72]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[73]  N. Spruston,et al.  Hippocampal Pyramidal Neurons Comprise Two Distinct Cell Types that Are Countermodulated by Metabotropic Receptors , 2012, Neuron.

[74]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[75]  Da-Ting Lin,et al.  Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo , 2015, Nature Neuroscience.

[76]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[77]  Jianing Yu,et al.  Layer 4 fast-spiking interneurons filter thalamocortical signals during active somatosensation , 2016, Nature Neuroscience.

[78]  Jeremy D. Cohen,et al.  Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments , 2017, eLife.

[79]  Yunyan Wang,et al.  Distinct Subthreshold Mechanisms Underlying Rate-Coding Principles in Primate Auditory Cortex , 2016, Neuron.

[80]  C. Bell An efference copy which is modified by reafferent input. , 1981, Science.

[81]  D. Tank,et al.  Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields , 2014, Nature Neuroscience.

[82]  Berthold Hedwig,et al.  The Cellular Basis of a Corollary Discharge , 2006, Science.

[83]  R. Kempter,et al.  Coherent Phasic Excitation during Hippocampal Ripples , 2011, Neuron.

[84]  B. McNaughton,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005, Science.

[85]  Athanasia G. Palasantza,et al.  Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq , 2015, Nature Biotechnology.

[86]  Johannes D. Seelig,et al.  Angular velocity integration in a fly heading circuit , 2017, eLife.

[87]  B. Connors,et al.  Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. , 1999, Journal of neurophysiology.

[88]  M. Fee,et al.  Active Stabilization of Electrodes for Intracellular Recording in Awake Behaving Animals , 2000, Neuron.

[89]  Winfried Denk,et al.  Targeted Whole-Cell Recordings in the Mammalian Brain In Vivo , 2003, Neuron.

[90]  M. Carandini,et al.  Inhibition dominates sensory responses in awake cortex , 2012, Nature.

[91]  R W GERARD,et al.  The normal membrane potential of frog sartorius fibers. , 1949, Journal of cellular and comparative physiology.

[92]  N. Burgess,et al.  A Hybrid Oscillatory Interference/Continuous Attractor Network Model of Grid Cell Firing , 2014, The Journal of Neuroscience.

[93]  Stephen V. David,et al.  Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection , 2015, Neuron.

[94]  G. Silberberg,et al.  Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner , 2017, Neuron.

[95]  A. Destexhe,et al.  Are corticothalamic ‘up’ states fragments of wakefulness? , 2007, Trends in Neurosciences.

[96]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Eran Stark,et al.  Excitation and Inhibition Compete to Control Spiking during Hippocampal Ripples: Intracellular Study in Behaving Mice , 2014, The Journal of Neuroscience.

[98]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[99]  A. Leonardo,et al.  A spike-timing mechanism for action selection , 2014, Nature Neuroscience.

[100]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[101]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[102]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[103]  M. Brecht,et al.  Behavioural report of single neuron stimulation in somatosensory cortex , 2008, Nature.

[104]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[105]  M. Brecht,et al.  Microcircuits of Functionally Identified Neurons in the Rat Medial Entorhinal Cortex , 2011, Neuron.

[106]  Glenn C. Turner,et al.  Integration of the olfactory code across dendritic claws of single mushroom body neurons , 2013, Nature Neuroscience.

[107]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[108]  Lisa M. Giocomo,et al.  Neural Circuits Original Research Article a Model Combining Oscillations and Attractor Dynamics for Generation of Grid Cell Firing , 2012 .

[109]  M. Scanziani,et al.  Distinct recurrent versus afferent dynamics in cortical visual processing , 2015, Nature Neuroscience.

[110]  M. Long,et al.  Inhibition protects acquired song segments during vocal learning in zebra finches , 2016, Science.

[111]  Yves Kremer,et al.  Membrane Potential Dynamics of Neocortical Projection Neurons Driving Target-Specific Signals , 2013, Neuron.

[112]  Zengcai V. Guo,et al.  Maintenance of persistent activity in a frontal thalamocortical loop , 2017, Nature.

[113]  Michael Z. Lin,et al.  Genetically encoded indicators of neuronal activity , 2016, Nature Neuroscience.

[114]  Michael Brecht,et al.  Head-anchored whole-cell recordings in freely moving rats , 2009, Nature Protocols.

[115]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[116]  Daniel Gomez-Dominguez,et al.  Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples , 2015, Nature Neuroscience.

[117]  P. Golshani,et al.  Visually Evoked 3–5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice , 2017, The Journal of Neuroscience.

[118]  M. Brecht,et al.  Friction-based stabilization of juxtacellular recordings in freely moving rats. , 2012, Journal of neurophysiology.

[119]  Greg Wayne,et al.  A temporal basis for predicting the sensory consequences of motor commands in an electric fish , 2014, Nature Neuroscience.

[120]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[121]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[122]  John F. Guzowski,et al.  Neuronal Competition and Selection During Memory Formation , 2006, Science.

[123]  L. F. Abbott,et al.  A Model of Spatial Map Formation in the Hippocampus of the Rat , 1999, Neural Computation.

[124]  Daniel D. Lee,et al.  Stability of the Memory of Eye Position in a Recurrent Network of Conductance-Based Model Neurons , 2000, Neuron.

[125]  Li I. Zhang,et al.  Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex , 2014, Nature Neuroscience.

[126]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[127]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[128]  Tiago Branco,et al.  Active dendritic integration as a mechanism for robust and precise grid cell firing , 2017, Nature Neuroscience.

[129]  Gilles Laurent,et al.  A Simple Connectivity Scheme for Sparse Coding in an Olfactory System , 2007, The Journal of Neuroscience.

[130]  Alcino J. Silva,et al.  Molecular and Cellular Approaches to Memory Allocation in Neural Circuits , 2009, Science.

[131]  Dezhe Z. Jin,et al.  Support for a synaptic chain model of neuronal sequence generation , 2010, Nature.

[132]  G. Buzsáki,et al.  The log-dynamic brain: how skewed distributions affect network operations , 2014, Nature Reviews Neuroscience.

[133]  Doyun Lee,et al.  Hippocampal Place Fields Emerge upon Single-Cell Manipulation of Excitability During Behavior , 2012, Science.

[134]  Shawn R. Olsen,et al.  Lateral presynaptic inhibition mediates gain control in an olfactory circuit , 2008, Nature.

[135]  Rachel I. Wilson,et al.  Parallel Transformation of Tactile Signals in Central Circuits of Drosophila , 2016, Cell.

[136]  Michael Brecht,et al.  Intracellular Determinants of Hippocampal CA1 Place and Silent Cell Activity in a Novel Environment , 2011, Neuron.

[137]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[138]  Andreas T Schaefer,et al.  Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics , 2011, Nature Neuroscience.

[139]  Nelson Spruston,et al.  Dendritic integration: 60 years of progress , 2015, Nature Neuroscience.

[140]  Ian Duguid,et al.  Dendritic excitation–inhibition balance shapes cerebellar output during motor behaviour , 2016, Nature Communications.

[141]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[142]  Albert K. Lee,et al.  Large environments reveal the statistical structure governing hippocampal representations , 2014, Science.

[143]  R. Mooney,et al.  A synaptic and circuit basis for corollary discharge in the auditory cortex , 2014, Nature.

[144]  James P. Bohnslav,et al.  A faithful internal representation of walking movements in the Drosophila visual system , 2016, Nature Neuroscience.

[145]  Michael Brecht,et al.  Impact of Spikelets on Hippocampal CA1 Pyramidal Cell Activity During Spatial Exploration , 2010, Science.

[146]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[147]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[148]  Ilan Lampl,et al.  Optopatcher—An electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation , 2013, Journal of Neuroscience Methods.

[149]  Michael Lagler,et al.  Behavior-dependent specialization of identified hippocampal interneurons , 2012, Nature Neuroscience.