Pupil response triggered by the onset of coherent motion

Abstract• Background: Recent studies have shown that transient constrictions of the pupil can be elicited by visual stimuli that do not cause an increment in light flux level on the retina. Such stimuli include achromatic gratings and isoluminant chromatic patterns. • Method: We investigated pupillary responses to the onset of coherent movement generated in a pattern of dots in random motion. Measurements were carried out in normal observers and in a subject with hemianopia caused by damaged primary visual cortex. • Results: The experimental findings show that the onset of coherent motion triggers systematic constrictions of the pupil that cannot be accounted for in terms of a pupil light reflex response. We labelled these constrictions Pupil motion responses (PMRs). Results show that PMRs have large response latencies and on average are of small response amplitudes. The dependence of PMRs on changes in motion parameters such as stimulus speed and direction of motion has been investigated. • Conclusions: The existence of PMRs to the onset of the coherent motion in human vision has been demonstrated. These new findings are discussed in relation to the psychophysical and physiological data on motion perception and the possible pathways involved in the control of the pupil response.

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  [The influence of sinusoidal luminous density changes on the mean pupil width and on subjective brightness]. , 1964, Kybernetik.

[3]  N. C. Barford Experimental Measurements: Precision, Error and Truth , 1967 .

[4]  M Clynes,et al.  COLOR DYNAMICS OF THE PUPIL , 1969, Annals of the New York Academy of Sciences.

[5]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[6]  R. Sekuler,et al.  Adaptation alters perceived direction of motion , 1976, Vision Research.

[7]  R. Doty,et al.  Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze. , 1977, Journal of neurophysiology.

[8]  R. S. Young,et al.  Pupil responses to foveal exchange of monochromatic lights. , 1980, Journal of the Optical Society of America.

[9]  S. Zeki The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  D. van Norren,et al.  Visual acuity measured with pupil responses to checkerboard stimuli. , 1980, Investigative ophthalmology & visual science.

[11]  K H Ruddock,et al.  Human visual responses in the absence of the geniculo-calcarine projection. , 1980, Brain : a journal of neurology.

[12]  G. Orban,et al.  Response to movement of neurons in areas 17 and 18 of the cat: velocity sensitivity. , 1981, Journal of neurophysiology.

[13]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[14]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[15]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[16]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[18]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[19]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[20]  J. Slooter The pupil, mirror of visual acuity , 1985 .

[21]  John L. Barbur,et al.  Speed discrimination and its relation to involuntary eye movements in human vision , 1985, Neuroscience Letters.

[22]  K. Ukai,et al.  Spatial pattern as a stimulus to the pupillary system. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[23]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[24]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. , 1986, Journal of neurophysiology.

[25]  D. J. Felleman,et al.  Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. , 1987, Journal of neurophysiology.

[26]  K H Ruddock,et al.  Residual vision in patients with retrogeniculate lesions of the visual pathways. , 1987, Brain : a journal of neurology.

[27]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[28]  田中 啓治 Analysis of Local and Wide-Field Movements in the Superior Temporal Visual Areas of the Macaque Monkey , 1987 .

[29]  J L Barbur,et al.  PUPIL RESPONSE AS AN OBJECTIVE MEASURE OF VISUAL ACUITY * , 1987, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[30]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[31]  A. Mikami,et al.  Direction selective neurons respond to short-range and long-range apparent motion stimuli in macaque visual area MT. , 1991, The International journal of neuroscience.

[32]  L Weiskrantz,et al.  Factors affecting visual sensitivity in a hemianopic subject. , 1991, Brain : a journal of neurology.

[33]  A. Cowey,et al.  Increment-threshold spectral sensitivity in blindsight. Evidence for colour opponency. , 1991, Brain : a journal of neurology.

[34]  M. J. Moseley,et al.  Visual acuity and the pupil grating response , 1992 .

[35]  J L Barbur,et al.  Pupillary responses to stimulus structure, colour and movement , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[36]  S Zeki,et al.  Conscious visual perception without V1. , 1993, Brain : a journal of neurology.

[37]  Colour vision testing using spatiotemporal luminance masking , 1993 .

[38]  42. Colour vision testing using spatiotemporal luminance masking Psychophysical and pupillometric methods , 1993 .

[39]  K. Cocker,et al.  Visual acuity and pupillary responses to spatial structure in infants. , 1994, Investigative ophthalmology & visual science.

[40]  L. Weiskrantz,et al.  Spatial and temporal response properties of residual vision in a case of hemianopia. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[41]  John L. Barbur,et al.  Parameters affecting conscious versus unconscious visual discrimination without V , 1995 .

[42]  L. Weiskrantz,et al.  Parameters affecting conscious versus unconscious visual discrimination with damage to the visual cortex (V1). , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[43]  John L. Barbur,et al.  A Study of Pupil Response Components in Human Vision , 1995 .

[44]  Dezsö Varjú,et al.  Der Einflu\ sinusförmiger Leuchtdichteänderungen auf die mittlere Pupillenweite und auf die subjektive Helligkeit , 1964, Kybernetik.