A Geometric Optimization Approach to Detecting and Intercepting Dynamic Targets

A methodology is developed to deploy a mobile sensor network for the purpose of detecting and capturing mobile targets in the plane. The sensing-pursuit problem considered in this paper is analogous to the Marco Polo game, in which the pursuer must capture multiple mobile targets that are sensed intermittently, and with very limited information. In this paper, the mobile sensor network consists of a set of robotic sensors that must track and capture mobile targets based on the information obtained through cooperative detections. Since the sensors are installed on robotic platforms and have limited range, the geometry of the platforms and of the sensors field-of- view play a key role in obstacle avoidance and target detection. Thus, a new cell decomposition approach is presented to formulate the probability of detection and the cost of operating the robots based on the geometric properties of the network. Numerical simulations verify the validity and flexibility of our methodology.

[1]  Vijay Kumar,et al.  A Framework and Architecture for Multi-Robot Coordination , 2000, ISER.

[2]  J.K. Hedrick,et al.  Guaranteed strategies to search for mobile evaders in the plane , 2006, 2006 American Control Conference.

[3]  Ming Qian,et al.  Probabilistic deployment for multiple sensor systems , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[4]  Silvia Ferrari,et al.  Information-Driven Sensor Path Planning by Approximate Cell Decomposition , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  Ingemar J. Cox,et al.  On Finding Ranked Assignments With Application to Multi-Target Tracking and Motion Correspondence , 1995 .

[6]  Marilena Vendittelli,et al.  Real-time map building and navigation for autonomous robots in unknown environments , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Jean-Claude Latombe,et al.  Robot Motion Planning with Uncertainty in Control and Sensing , 1991, Artif. Intell..

[8]  Aubrey B. Poore,et al.  A Numerical Study of Some Data Association Problems Arising in Multitarget Tracking , 1994 .

[9]  Vijay R. Kumar,et al.  Optimal Motion Generation for Groups of Robots: A Geometric Approach , 2004 .

[10]  L FredmanMichael,et al.  On the complexity of computing the measure of ∪[ai,bi] , 1978 .

[11]  P. Tait Vector Analysis , 1893, Nature.

[12]  Jorge Urrutia,et al.  Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.

[13]  Jean-Claude Latombe,et al.  Motion Planning with Uncertainty: A Landmark Approach , 1995, Artif. Intell..

[14]  Lingfeng Wang,et al.  Tracking with Distributed Sets of Proximity Sensors using Geometric Invariants , 2004 .

[15]  Vijay Kumar,et al.  A Framework and Architecture for Multirobot Coordination , 2000, International Symposium on Experimental Robotics.

[16]  Bruce W. Weide,et al.  On the complexity of computing the measure of ∪[ai,bi] , 1978, CACM.

[17]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[18]  S. Ferrari,et al.  Demining sensor modeling and feature-level fusion by Bayesian networks , 2006, IEEE Sensors Journal.

[19]  Rafael Fierro,et al.  A Multi-Vehicle Framework for the Development of Robotic Games: The Marco Polo Case , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[20]  Silvia Ferrari,et al.  A Geometric Transversal Approach to Analyzing Track Coverage in Sensor Networks , 2008, IEEE Transactions on Computers.

[21]  Howie Choset,et al.  Path Planning for Robotic Demining: Robust Sensor-Based Coverage of Unstructured Environments and Probabilistic Methods , 2003, Int. J. Robotics Res..

[22]  Randy A. Freeman,et al.  Distributed Cooperative Active Sensing Using Consensus Filters , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[23]  Sven Koenig,et al.  Performance bounds for planning in unknown terrain , 2003, Artif. Intell..

[24]  Andrea S. LaPaugh,et al.  Recontamination does not help to search a graph , 1993, JACM.

[25]  Yong Wang,et al.  Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet , 2002, ASPLOS X.

[26]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[27]  T. Shermer Recent Results in Art Galleries , 1992 .

[28]  Rafael Fierro,et al.  Mobile robotic sensors for perimeter detection and tracking. , 2007, ISA transactions.

[29]  Jean-Claude Latombe,et al.  New heuristic algorithms for efficient hierarchical path planning , 1991, IEEE Trans. Robotics Autom..

[30]  S. Ferrari Track coverage in sensor networks , 2006, 2006 American Control Conference.

[31]  Jan M. H. Hendrickx,et al.  Soil effects on thermal signatures of buried nonmetallic landmines , 2003, SPIE Defense + Commercial Sensing.

[33]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[34]  A. Arsie,et al.  Efficient routing of multiple vehicles with no communication , 2007, 2007 American Control Conference.

[35]  Nageswara S. V. Rao,et al.  Robot navigation in unknown generalized polygonal terrains using vision sensors , 1995, IEEE Trans. Syst. Man Cybern..

[36]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[37]  S. Ferrari,et al.  On the Development of an Intelligent Computer Player for CLUE: a Case Study on Preposterior Decision Analysis , 2006, 2006 American Control Conference.

[38]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[39]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[40]  S. Sitharama Iyengar,et al.  Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms , 1993 .

[41]  S. Shankar Sastry,et al.  Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation , 2002, IEEE Trans. Robotics Autom..

[42]  T.A. Wettergren Performance of search via track-before-detect for distributed sensor networks , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[43]  M. Farooq,et al.  A comparison of data association techniques for target tracking in clutter , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[44]  Francesco Bullo,et al.  Maximizing visibility in nonconvex polygons: nonsmooth analysis and gradient algorithm design , 2005, Proceedings of the 2005, American Control Conference, 2005..

[45]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[46]  T. D. Parsons,et al.  Pursuit-evasion in a graph , 1978 .

[47]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[48]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1992 .

[49]  R. Pollack,et al.  Geometric Transversal Theory , 1993 .

[50]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[51]  Sampath Kannan,et al.  Randomized pursuit-evasion in a polygonal environment , 2005, IEEE Transactions on Robotics.

[52]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[53]  Joel W. Burdick,et al.  A decentralized motion coordination strategy for dynamic target tracking , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[54]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[55]  R. Fierro,et al.  Decentralized cooperative control - A multivehicle platform for research in networked embedded systems , 2007, IEEE Control Systems.

[56]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[57]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[58]  Michel Cosnard,et al.  Numerical Solution of Nonlinear Equations , 1979, TOMS.

[59]  Howie Choset,et al.  Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.

[60]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[61]  Emilio Frazzoli,et al.  Efficient routing of multiple vehicles with no explicit communications , 2008 .

[62]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .