Neural mechanisms of orientation selectivity in the visual cortex.

The origin of orientation selectivity in the responses of simple cells in cat visual cortex serves as a model problem for understanding cortical circuitry and computation. The feed-forward model posits that this selectivity arises simply from the arrangement of thalamic inputs to a simple cell. Much evidence, including a number of recent intracellular studies, supports a primary role of the thalamic inputs in determining simple cell response properties, including orientation tuning. This mechanism alone, however, cannot explain the invariance of orientation tuning to changes in stimulus contrast. Simple cells receive push-pull inhibition: ON inhibition in OFF subregions and vice versa. Addition of such inhibition to the feed-forward model can account for this contrast invariance, provided the inhibition is sufficiently strong. The predictions of "normalization" and "feedback" models are reviewed and compared with the predictions of this modified feed-forward model and with experimental results. The modified feed-forward and the feedback models ascribe fundamentally different functions to cortical processing.

[1]  Maurice Merleau-Ponty Phenomenology of Perception , 1964 .

[2]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[3]  D. Hubel,et al.  The period of susceptibility to the physiological effects of unilateral eye closure in kittens , 1970, The Journal of physiology.

[4]  L. Maffei,et al.  Neural Correlate of Perceptual Adaptation to Gratings , 1973, Science.

[5]  P. O. Bishop,et al.  Receptive fields of simple cells in the cat striate cortex , 1973, The Journal of physiology.

[6]  L. Palmer,et al.  An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and the posterior nucleus in the cat. , 1974, Brain research.

[7]  D. V. van Essen,et al.  Cell structure and function in the visual cortex of the cat , 1974, The Journal of physiology.

[8]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[9]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[10]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[11]  M. Stryker,et al.  Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. , 1978, The Journal of physiology.

[12]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[13]  G. Henry,et al.  Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. , 1979, Journal of neurophysiology.

[14]  A. Sillito,et al.  A re-evaluation of the mechanisms underlying simple cell orientation selectivity , 1980, Brain Research.

[15]  A. L. Humphrey,et al.  Topographic organization of the orientation column system in the striate cortex of the tree shrew (Tupaia glis). I. Microelectrode recording , 1980, The Journal of comparative neurology.

[16]  A. Dean The relationship between response amplitude and contrast for cat striate cortical neurones. , 1981, The Journal of physiology.

[17]  P. Heggelund,et al.  Receptive field organization of simple cells in cat striate cortex , 1981, Experimental brain research.

[18]  L. Palmer,et al.  Receptive-field structure in cat striate cortex. , 1981, Journal of neurophysiology.

[19]  D. Mackay,et al.  Modulatory influences of moving textured backgrounds on responsiveness of simple cells in feline striate cortex , 1981, The Journal of physiology.

[20]  J. Movshon,et al.  Visual neural development. , 1981, Annual review of psychology.

[21]  D. Ferster A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex , 1981, The Journal of physiology.

[22]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  J Bullier,et al.  Receptive-field transformations between LGN neurons and S-cells of cat-striate cortex. , 1982, Journal of neurophysiology.

[24]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[25]  K. Tanaka Cross-correlation analysis of geniculostriate neuronal relationships in cats. , 1983, Journal of neurophysiology.

[26]  D. Ferster,et al.  An intracellular analysis of geniculo‐cortical connectivity in area 17 of the cat. , 1983, The Journal of physiology.

[27]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Y. Frégnac,et al.  Development of neuronal selectivity in primary visual cortex of cat. , 1984, Physiological reviews.

[29]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[30]  J. P. Jones,et al.  Receptive-field properties and laminar distribution of X-like and Y-like simple cells in cat area 17. , 1984, Journal of neurophysiology.

[31]  D. G. Albrecht,et al.  Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. , 1984, The Journal of physiology.

[32]  R. L. de Valois,et al.  Relationship between spatial-frequency and orientation tuning of striate-cortex cells. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[33]  D. G. Albrecht,et al.  Periodicity of striate-cortex-cell receptive fields. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[34]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[35]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[36]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[38]  Peter Sterling,et al.  Ultrastructure of synapses from the A‐laminae of the lateral geniculate nucleus in layer IV of the cat striate cortex , 1987, The Journal of comparative neurology.

[39]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[40]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[41]  J. P. Jones,et al.  The two-dimensional spectral structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[42]  G. Orban,et al.  The suppressive influence of moving textured backgrounds on responses of cat striate neurons to moving bars. , 1987, Journal of neurophysiology.

[43]  D. Whitteridge,et al.  Selective responses of visual cortical cells do not depend on shunting inhibition , 1988, Nature.

[44]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[46]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.

[47]  P. Hammond,et al.  Influence of spatial frequency on tuning and bias for orientation and direction in the cat's striate cortex , 1990, Vision Research.

[48]  O D Creutzfeldt,et al.  Whole cell recording and conductance measurements in cat visual cortex in-vivo. , 1991, Neuroreport.

[49]  A. B. Bonds,et al.  Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex , 1991, Vision Research.

[50]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[51]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  S. Nelson,et al.  Temporal interactions in the cat visual system. I. Orientation- selective suppression in the visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  D. Whitteridge,et al.  An intracellular analysis of the visual responses of neurones in cat visual cortex. , 1991, The Journal of physiology.

[54]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[56]  D Ferster,et al.  Nonlinearity of spatial summation in simple cells of areas 17 and 18 of cat visual cortex. , 1991, Journal of neurophysiology.

[57]  C. Gray,et al.  Visually evoked oscillations of membrane potential in cells of cat visual cortex. , 1992, Science.

[58]  D. Ferster,et al.  EPSP-IPSP interactions in cat visual cortex studied with in vivo whole- cell patch recording , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  A. L. Humphrey,et al.  Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. , 1992, Journal of neurophysiology.

[60]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[61]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[62]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[63]  M. Stryker,et al.  Development of orientation selectivity in ferret visual cortex and effects of deprivation , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[65]  Trichur Raman Vidyasagar,et al.  Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[67]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[68]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[70]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Earl L. Smith,et al.  Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast. , 1995, Journal of neurophysiology.

[72]  C. Koch,et al.  Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[74]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  A Grinvald,et al.  Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. , 1995, Journal of neurophysiology.

[76]  D. G. Albrecht Visual cortex neurons in monkey and cat: Effect of contrast on the spatial and temporal phase transfer functions , 1995, Visual Neuroscience.

[77]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[78]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[79]  L. Palmer,et al.  Contrast adaptation and excitatory amino acid receptors in cat striate cortex , 1996, Visual Neuroscience.

[80]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[81]  D J Simons,et al.  Spatial gradients and inhibitory summation in the rat whisker barrel system. , 1996, Journal of neurophysiology.

[82]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[83]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[84]  T Bonhoeffer,et al.  Orientation selectivity in pinwheel centers in cat striate cortex. , 1997, Science.

[85]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat striate cortex: Effects on orientation tuning and direction selectivity , 1997, Visual Neuroscience.

[86]  M. Carandini,et al.  Predictions of a recurrent model of orientation selectivity , 1997, Vision Research.

[87]  C. Gray,et al.  Physiological properties of inhibitory interneurons in cat striate cortex. , 1997, Cerebral cortex.

[88]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[89]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[90]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[91]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[92]  Dario L. Ringach,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[93]  B. Connors,et al.  Differential Regulation of Neocortical Synapses by Neuromodulators and Activity , 1997, Neuron.

[94]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[95]  S. Grant,et al.  A role for the Ras signalling pathway in synaptic transmission and long-term memory , 1997, Nature.

[96]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[97]  M. Stryker,et al.  The role of visual experience in the development of columns in cat visual cortex. , 1998, Science.

[98]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[99]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[100]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[101]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[102]  J. B. Levitt,et al.  A model for the intracortical origin of orientation preference and tuning in macaque striate cortex , 1999, Visual Neuroscience.

[103]  K. Miller,et al.  Is the development of orientation selectivity instructed by activity? , 1999, Journal of neurobiology.

[104]  I. Ohzawa,et al.  Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex , 1999, Visual Neuroscience.

[105]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[106]  D J Simons,et al.  Functional independence of layer IV barrels in rodent somatosensory cortex. , 1999, Journal of neurophysiology.

[107]  B. Connors,et al.  Efficacy of Thalamocortical and Intracortical Synaptic Connections Quanta, Innervation, and Reliability , 1999, Neuron.

[108]  E. G. Jones,et al.  Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. , 2000, Annual review of neuroscience.

[109]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[110]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[111]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[112]  A. Basbaum,et al.  Pain genes?: natural variation and transgenic mutants. , 2000, Annual review of neuroscience.

[113]  D. P. King,et al.  Molecular genetics of circadian rhythms in mammals. , 2000, Annual review of neuroscience.

[114]  Nicholas J. Priebe,et al.  Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning. , 2001, Journal of neurophysiology.