Compliant motion control of redundant manipulators

Two control schemes, called extended hybrid control and extended impedance control respectively, are developed for assuring the compliant motion of redundant manipulators. In the two control schemes, the basic compliant motion task is accomplished while the redundancy is utilized to realize some additional constraints which optimize any user-defined objective functions. Further, real-time implementations are given and some experimental results on a 3-DOF planar redundant manipulator are also presented to illustrate the two proposed schemes and demonstrate their capabilities for optimizing various objective functions.<<ETX>>

[1]  Dragomir N. Nenchev,et al.  Redundancy resolution through local optimization: A review , 1989, J. Field Robotics.

[2]  Thomas B. Sheridan,et al.  Robust compliant motion for manipulators, part I: The fundamental concepts of compliant motion , 1986, IEEE J. Robotics Autom..

[3]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[4]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[5]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Stephen L. Chiu,et al.  Task Compatibility of Manipulator Postures , 1988, Int. J. Robotics Res..

[7]  Neville Hogan,et al.  Stable execution of contact tasks using impedance control , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[8]  John M. Hollerbach,et al.  The Role of Dynamic Models in Cartesian Force Control of Manipulators , 1989, Int. J. Robotics Res..

[9]  John J. Craig,et al.  Hybrid position/force control of manipulators , 1981 .

[10]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[11]  Kang Shin,et al.  Compliant control of robotic manipulators with resolved acceleration , 1985, 1985 24th IEEE Conference on Decision and Control.

[12]  David E. Orin,et al.  An inverse kinematic solution for kinematically redundant robot manipulators , 1984, J. Field Robotics.

[13]  Norihiko Adachi,et al.  Extended hybrid control of redundant robotic manipulators: theory and implementation. , 1991 .

[14]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[15]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[16]  Matthew T. Mason,et al.  Compliance and Force Control for Computer Controlled Manipulators , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  John Baillieul,et al.  Kinematic programming alternatives for redundant manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[18]  Tsuneo Yoshikawa,et al.  Dynamic manipulability of robot manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[19]  Pyung Hun Chang,et al.  A closed-form solution for inverse kinematics of robot manipulators with redundancy , 1987, IEEE J. Robotics Autom..

[20]  Charles A. Klein,et al.  Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators , 1987 .