Uncertainty in Robotics - Tractable Inference and Policy Optimization

English The goal in robotics is to bring the robot and the world from some initial state into a desired state. For instance, we may want the robot to move to a particular place, or we may want it to arrange a set of external objects in a specific way. In order to achieve this, the robot needs to physically interact with the world. However, our models describing this interaction are an imperfect representation of reality and their predictions are hence subject to a large degree of uncertainty. In this thesis we investigate two key problems which arise as a consequence of this uncertainty. First, we consider the filtering problem, i.e. estimating the underlying state of our robot and the world given sensory information. We analyze the limitations of the two most widely used filtering methods in robotics, the particle filter (PF) and the Gaussian filter (GF), and we propose according extensions. The key problem of the PF is the exponential growth of the computational cost with the state dimension. We identify certain independence structures among the state and observation variables which occur in robotics, and we show how PFs can be extended to exploit those. These extensions allow us to apply PFs to such systems even if they have a high-dimensional state-space. In contrast, the main drawback of the GF is that its parametric form can be too restrictive to accurately capture the dependences in systems with nonlinear observation models. We show how the GF can be seen as the optimal approximation to the exact posterior distribution, subject to some constraints. This new perspective then motivates extensions to relax this constraint, which can greatly improve the filtering accuracy in nonlinear systems. As a concrete application for the proposed PF and GF extensions, we consider the problem of 3D object and manipulator tracking using depth cameras. We evaluate the proposed tracking methods extensively to show their accuracy under difficult conditions, such as heavy occlusions and fast motion. A second consequence of the uncertainty in our physics model is that we are not able to accurately predict how well a certain controller will perform on the real robot. Unfortunately, in robotics problems the number of experiments required to fully explore the parameter space of a controller is often prohibitively large. Hence, we may not be able to identify the global

[1]  Marie-José Aldon,et al.  Mobile robot attitude estimation by fusion of inertial data , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[2]  Fredrik Gustafsson,et al.  A Student's t filter for heavy tailed process and measurement noise , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[3]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[4]  Henrik I. Christensen,et al.  RGB-D object tracking: A particle filter approach on GPU , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[6]  Stefan Schaal,et al.  Probabilistic object tracking using a range camera , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  P. Bickel,et al.  Sharp failure rates for the bootstrap particle filter in high dimensions , 2008, 0805.3287.

[8]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[9]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[10]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[11]  H. Kushner Approximations to optimal nonlinear filters , 1967, IEEE Transactions on Automatic Control.

[12]  Howie Choset,et al.  Using response surfaces and expected improvement to optimize snake robot gait parameters , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Gaurav S. Sukhatme,et al.  Learning task error models for manipulation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[14]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[15]  Tamim Asfour,et al.  Visual servoing for dual arm motions on a humanoid robot , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[16]  Christopher D. Karlgaard,et al.  Comparison of Several Nonlinear Filters for a Benchmark Tracking Problem , 2006 .

[17]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[18]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[19]  Antonis A. Argyros,et al.  Scalable 3D Tracking of Multiple Interacting Objects , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  H. Robbins Some aspects of the sequential design of experiments , 1952 .

[21]  Shipra Agrawal,et al.  Analysis of Thompson Sampling for the Multi-armed Bandit Problem , 2011, COLT.

[22]  Dieter Fox,et al.  DART: Dense Articulated Real-Time Tracking , 2014, Robotics: Science and Systems.

[23]  P. Bickel,et al.  Curse-of-dimensionality revisited : Collapse of importance sampling in very large scale systems , 2005 .

[24]  Vladimir Ivan,et al.  Real-time object pose recognition and tracking with an imprecisely calibrated moving RGB-D camera , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[26]  Rémi Munos,et al.  Thompson Sampling: An Asymptotically Optimal Finite-Time Analysis , 2012, ALT.

[27]  Stefan Schaal,et al.  Probabilistic Articulated Real-Time Tracking for Robot Manipulation , 2016, IEEE Robotics and Automation Letters.

[28]  Simo Särkkä,et al.  Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[29]  T. L. Lai Andherbertrobbins Asymptotically Efficient Adaptive Allocation Rules , 1985 .

[30]  Stefan Schaal,et al.  Depth-based object tracking using a Robust Gaussian Filter , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[31]  Thomas P. Hayes,et al.  Stochastic Linear Optimization under Bandit Feedback , 2008, COLT.

[32]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[33]  Zoltan-Csaba Marton,et al.  Depth-based tracking with physical constraints for robot manipulation , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[34]  Rémi Munos,et al.  Pure Exploration in Multi-armed Bandits Problems , 2009, ALT.

[35]  Eduardo Mario Nebot,et al.  Approximate Inference in State-Space Models With Heavy-Tailed Noise , 2012, IEEE Transactions on Signal Processing.

[36]  Jan Peters,et al.  Reinforcement learning in robotics: A survey , 2013, Int. J. Robotics Res..

[37]  Stefan Schaal,et al.  Robust Gaussian filtering using a pseudo measurement , 2015, 2016 American Control Conference (ACC).

[38]  Danica Kragic,et al.  Integrated on-line robot-camera calibration and object pose estimation , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[39]  V. Benes Exact finite-dimensional filters for certain diffusions with nonlinear drift , 1981 .

[40]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[41]  Stefan Schaal,et al.  The Coordinate Particle Filter - a novel Particle Filter for high dimensional systems , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[42]  Stefan Schaal,et al.  A Kalman filter for robust outlier detection , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Jan Peters,et al.  A Survey on Policy Search for Robotics , 2013, Found. Trends Robotics.

[44]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[45]  Alkis Gotovos,et al.  Safe Exploration for Optimization with Gaussian Processes , 2015, ICML.

[46]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[47]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[48]  John J. Leonard,et al.  Efficient scene simulation for robust monte carlo localization using an RGB-D camera , 2012, 2012 IEEE International Conference on Robotics and Automation.

[49]  Hugh F. Durrant-Whyte,et al.  An Autonomous Guided Vehicle for Cargo Handling Applications , 1995, ISER.

[50]  Dieter Fox,et al.  Manipulator and object tracking for in-hand 3D object modeling , 2011, Int. J. Robotics Res..

[51]  Adam D. Bull,et al.  Convergence Rates of Efficient Global Optimization Algorithms , 2011, J. Mach. Learn. Res..

[52]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[53]  Alexander J. Smola,et al.  Exponential Regret Bounds for Gaussian Process Bandits with Deterministic Observations , 2012, ICML.

[54]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[55]  Richard J. Meinhold,et al.  Robustification of Kalman Filter Models , 1989 .

[56]  Russell Greiner,et al.  Active Model Selection , 2004, UAI.

[57]  Kurt Konolige,et al.  Calibrating a Multi-arm Multi-sensor Robot: A Bundle Adjustment Approach , 2010, ISER.

[58]  Nicholas Rotella,et al.  State estimation for a humanoid robot , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[59]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[60]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[61]  Joel W. Burdick,et al.  Combined shape, appearance and silhouette for simultaneous manipulator and object tracking , 2012, 2012 IEEE International Conference on Robotics and Automation.

[62]  Wen-Rong Wu,et al.  A nonlinear IMM algorithm for maneuvering target tracking , 1994 .

[63]  Ian D. Reid,et al.  A Unified Energy Minimization Framework for Model Fitting in Depth , 2012, ECCV Workshops.

[64]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[65]  Chris Harris,et al.  RAPID - a video rate object tracker , 1990, BMVC.

[66]  Andreas Krause,et al.  Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization , 2010, J. Artif. Intell. Res..

[67]  Harold J. Kushner,et al.  A nonlinear filtering algorithm based on an approximation of the conditional distribution , 2000, IEEE Trans. Autom. Control..

[68]  Ángel F. García-Fernández,et al.  Analysis of Kalman Filter Approximations for Nonlinear Measurements , 2013, IEEE Transactions on Signal Processing.

[69]  R. Martin,et al.  Robust bayesian estimation for the linear model and robustifying the Kalman filter , 1977 .

[70]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[71]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[72]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[73]  F. Daum Exact finite dimensional nonlinear filters , 1985, 1985 24th IEEE Conference on Decision and Control.

[74]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[75]  Jan Peters,et al.  Bayesian Gait Optimization for Bipedal Locomotion , 2014, LION.

[76]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[77]  Stefano Ermon,et al.  Best arm identification in multi-armed bandits with delayed feedback , 2018, AISTATS.

[78]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[79]  Eduardo Mario Nebot,et al.  An outlier-robust Kalman filter , 2011, 2011 IEEE International Conference on Robotics and Automation.

[80]  Danica Kragic,et al.  Real-time tracking meets online grasp planning , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[81]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[82]  Tao Wang,et al.  Automatic Gait Optimization with Gaussian Process Regression , 2007, IJCAI.

[83]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .

[84]  Andreas Krause,et al.  Submodular Function Maximization , 2014, Tractability.

[85]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[86]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[87]  Vincent Lepetit,et al.  Monocular Model-Based 3D Tracking of Rigid Objects: A Survey , 2005, Found. Trends Comput. Graph. Vis..

[88]  Simo Särkkä,et al.  Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations , 2009, IEEE Transactions on Automatic Control.

[89]  Stefan Schaal,et al.  A new perspective and extension of the Gaussian Filter , 2015, Int. J. Robotics Res..

[90]  Vincent Lepetit,et al.  Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes , 2012, ACCV.

[91]  S. Mitter,et al.  Robust Recursive Estimation in the Presence of Heavy-Tailed Observation Noise , 1994 .

[92]  Henrik I. Christensen,et al.  Real-time 3D model-based tracking using edge and keypoint features for robotic manipulation , 2010, 2010 IEEE International Conference on Robotics and Automation.

[93]  Benjamin Van Roy,et al.  An Information-Theoretic Analysis of Thompson Sampling , 2014, J. Mach. Learn. Res..

[94]  Stefan Schaal,et al.  Real-Time Perception Meets Reactive Motion Generation , 2017, IEEE Robotics and Automation Letters.

[95]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[96]  R. Fitzgerald,et al.  Decoupled Kalman filters for phased array radar tracking , 1983 .

[97]  I. Bilik,et al.  Target tracking in glint noise environment using nonlinear non-Gaussian Kalman filter , 2006, 2006 IEEE Conference on Radar.

[98]  Yuanxin Wu,et al.  A Numerical-Integration Perspective on Gaussian Filters , 2006, IEEE Transactions on Signal Processing.

[99]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[100]  Andreas Krause,et al.  Safe controller optimization for quadrotors with Gaussian processes , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[101]  Claudia Pfreundt Probabilistic Object Tracking on the GPU Bachelor Thesis of , 2014 .

[102]  H. W. Sorenson,et al.  Kalman filtering : theory and application , 1985 .

[103]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[104]  R. Cooke,et al.  Fat-Tailed Distributions: Data, Diagnostics and Dependence , 2014 .

[105]  Stefan Schaal,et al.  Automatic LQR tuning based on Gaussian process global optimization , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[106]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[107]  G. Hewer,et al.  Robust Preprocessing for Kalman Filtering of Glint Noise , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[108]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..