The Measurement of Information Transmitted by a Neural Population: Promises and Challenges

All brain functions require the coordinated activity of many neurons, and therefore there is considerable interest in estimating the amount of information that the discharge of a neural population transmits to its targets. In the past, such estimates had presented a significant challenge for populations of more than a few neurons, but we have recently described a novel method for providing such estimates for populations of essentially arbitrary size. Here, we explore the influence of some important aspects of the neuronal population discharge on such estimates. In particular, we investigate the roles of mean firing rate and of the degree and nature of correlations among neurons. The results provide constraints on the applicability of our new method and should help neuroscientists determine whether such an application is appropriate for their data.

[1]  S. Laughlin,et al.  Energy limitation as a selective pressure on the evolution of sensory systems , 2008, Journal of Experimental Biology.

[2]  Jonathon Shlens,et al.  The Structure of Multi-Neuron Firing Patterns in Primate Retina , 2006, The Journal of Neuroscience.

[3]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E. Vaadia,et al.  Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. , 1993, Journal of neurophysiology.

[5]  Kazuyuki Aihara,et al.  Bridging rate coding and temporal spike coding by effect of noise. , 2002, Physical review letters.

[6]  S. Sherman Tonic and burst firing: dual modes of thalamocortical relay , 2001, Trends in Neurosciences.

[7]  R. Kass,et al.  Multiple neural spike train data analysis: state-of-the-art and future challenges , 2004, Nature Neuroscience.

[8]  G. B.,et al.  Treatise on Thermodynamics , 1903, Nature.

[9]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[10]  W. McCulloch,et al.  The limiting information capacity of a neuronal link , 1952 .

[11]  M. Diamond,et al.  Population Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[12]  Inés Samengo,et al.  When and Why Noise Correlations Are Important in Neural Decoding , 2013, The Journal of Neuroscience.

[13]  David C. Van Essen,et al.  Multiple processing streams in occipitotemporal visual cortex , 1994, Nature.

[14]  J. Triesch,et al.  Power spectra of the natural input to the visual system , 2013, Vision Research.

[15]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[16]  E T Rolls,et al.  Correlations and the encoding of information in the nervous system , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  T. Gawne The simultaneous coding of orientation and contrast in the responses of V1 complex cells , 2000, Experimental Brain Research.

[18]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[19]  R. Reid,et al.  Frontiers in Integrative Neuroscience Integrative Neuroscience Materials and Methods Animal Preparation and Surgery , 2022 .

[20]  Sandy Lovie How the mind works , 1980, Nature.

[21]  Alex Casti,et al.  Stimulus Size Dependence of Information Transfer from Retina to Thalamus , 2009, Front. Syst. Neurosci..

[22]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[23]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[24]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[25]  H. Kimmig,et al.  Gaze pursuit, ‘Attention pursuit’ and their Effects on Cortical Activations , 2006, Clinical Neurophysiology.

[26]  D. Tolhurst,et al.  Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes , 2000, Vision Research.

[27]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[28]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[29]  Sidarta Ribeiro,et al.  Multielectrode recordings: the next steps , 2002, Current Opinion in Neurobiology.

[30]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[31]  P. Latham,et al.  Retinal ganglion cells act largely as independent encoders , 2001, Nature.

[32]  Jonathan D Victor,et al.  Approaches to Information-Theoretic Analysis of Neural Activity , 2006, Biological theory.

[33]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[34]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[35]  Wulfram Gerstner,et al.  A History of Spike-Timing-Dependent Plasticity , 2011, Front. Syn. Neurosci..

[36]  Bruce W. Knight,et al.  Frontiers in Computational Neuroscience Computational Neuroscience Materials and Methods Surgical Preparation , 2022 .

[37]  Kirk T. McDonald,et al.  Maxwell ’ s Demon , 2008 .

[38]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[39]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[40]  T. Weyand,et al.  Retinogeniculate transmission in wakefulness. , 2007, Journal of neurophysiology.

[41]  Robert Haslinger,et al.  The Computational Structure of Spike Trains , 2009, Neural Computation.

[42]  J. Krüger Simultaneous individual recordings from many cerebral neurons: techniques and results. , 1983, Reviews of physiology, biochemistry and pharmacology.

[43]  Shoji Tanaka Numerical study of coding of the movement direction by a population in the motor cortex , 2004, Biological Cybernetics.

[44]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[45]  Maria V. Sanchez-Vives,et al.  Application of Lempel–Ziv complexity to the analysis of neural discharges , 2003, Network.

[46]  Si Wu,et al.  Efficient coding of natural images. , 2011, Sheng li xue bao : [Acta physiologica Sinica].

[47]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.

[48]  M. Young,et al.  Correlations, feature‐binding and population coding in primary visual cortex , 2003, Neuroreport.

[49]  R W Rodieck,et al.  Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. , 1983, Brain, behavior and evolution.

[50]  Benjamin Sivyer,et al.  Direction selectivity is computed by active dendritic integration in retinal ganglion cells , 2013, Nature Neuroscience.

[51]  Robert H Wurtz,et al.  Attentional Modulation of Thalamic Reticular Neurons , 2006, The Journal of Neuroscience.

[52]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[53]  J. Victor,et al.  Nature and precision of temporal coding in visual cortex: a metric-space analysis. , 1996, Journal of neurophysiology.

[54]  Peter E. Latham,et al.  Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't , 2008, PLoS Comput. Biol..

[55]  Wade G. Regehr,et al.  Timing and Specificity of Feed-Forward Inhibition within the LGN , 2005, Neuron.

[56]  Shy Shoham,et al.  Robust, automatic spike sorting using mixtures of multivariate t-distributions , 2003, Journal of Neuroscience Methods.

[57]  Victor A. F. Lamme,et al.  Figure-ground activity in primary visual cortex is suppressed by anesthesia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Liam Paninski,et al.  Statistical models for neural encoding, decoding, and optimal stimulus design. , 2007, Progress in brain research.

[59]  P. Maldonado,et al.  Neuronal assembly dynamics in the rat auditory cortex during reorganization induced by intracortical microstimulation , 1996, Experimental Brain Research.

[60]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[61]  Prrmon Pms LIii,et al.  FACTORS INFLUENCING VELOCITY CODING IN THE HUMAN VISUAL SYSTEM , 2002 .

[62]  B J Richmond,et al.  Excess synchrony in motor cortical neurons provides redundant direction information with that from coarse temporal measures. , 2001, Journal of neurophysiology.

[63]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[64]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[65]  E J Chichilnisky,et al.  Prediction and Decoding of Retinal Ganglion Cell Responses with a Probabilistic Spiking Model , 2005, The Journal of Neuroscience.

[66]  John P. Miller,et al.  Temporal encoding in nervous systems: A rigorous definition , 1995, Journal of Computational Neuroscience.

[67]  A. Campagne,et al.  Behavioral assessment of emotional and motivational appraisal during visual processing of emotional scenes depending on spatial frequencies , 2013, Brain and Cognition.

[68]  D. Baylor,et al.  Concerted Signaling by Retinal Ganglion Cells , 1995, Science.

[69]  S. Sherman,et al.  Thalamic relays and cortical functioning. , 2005, Progress in brain research.

[70]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[71]  R. Farivar Dorsal–ventral integration in object recognition , 2009, Brain Research Reviews.

[72]  M. London,et al.  Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex , 2010, Nature.

[73]  Jonathan D Victor,et al.  Spike train metrics , 2005, Current Opinion in Neurobiology.

[74]  A. P. Georgopoulos,et al.  Primate motor cortex and free arm movements to visual targets in three- dimensional space. III. Positional gradients and population coding of movement direction from various movement origins , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  David A. Boas,et al.  Frontal Lobe Activation during Object Permanence: Data from Near-Infrared Spectroscopy , 2002, NeuroImage.

[76]  Michael J. Berry,et al.  Redundancy in the Population Code of the Retina , 2005, Neuron.

[77]  Michael Robert DeWeese,et al.  Sparse Coding Models Can Exhibit Decreasing Sparseness while Learning Sparse Codes for Natural Images , 2013, PLoS Comput. Biol..

[78]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[79]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[80]  A. Georgopoulos,et al.  The motor cortex and the coding of force. , 1992, Science.

[81]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[82]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[83]  Eero P. Simoncelli,et al.  Modeling the Impact of Common Noise Inputs on the Network Activity of Retinal Ganglion Cells Action Editor: Brent Doiron , 2022 .

[84]  Peter E. Latham,et al.  Neural characterization in partially observed populations of spiking neurons , 2007, NIPS.

[85]  Jesse D. Marshall,et al.  Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. , 2013, ACS nano.

[86]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[87]  T. Bullock The Reliability of Neurons , 1970, The Journal of general physiology.

[88]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  M S Lewicki,et al.  A review of methods for spike sorting: the detection and classification of neural action potentials. , 1998, Network.

[90]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[91]  Gary Marsat,et al.  The structure and size of sensory bursts encode stimulus information but only size affects behavior , 2010, Journal of Comparative Physiology A.

[92]  N. Wittenburg,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , .

[93]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[94]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[95]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[96]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Jack L. Gallant,et al.  Natural Scene Statistics Account for the Representation of Scene Categories in Human Visual Cortex , 2013, Neuron.

[98]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[99]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[100]  R. Reid,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience Methods Article , 2022 .

[101]  Wolf Singer,et al.  High-frequency oscillations and the neurobiology of schizophrenia , 2013, Dialogues in clinical neuroscience.

[102]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[103]  Stefano Panzeri,et al.  A Unified Approach to the Study of Temporal, Correlational, and Rate Coding , 1999, Neural Computation.

[104]  R. Segev,et al.  Adaptive Colour Contrast Coding in the Salamander Retina Efficiently Matches Natural Scene Statistics , 2013, PloS one.

[105]  Stefano Panzeri,et al.  Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands , 2010, Journal of Computational Neuroscience.

[106]  Heng-Ru May Tan,et al.  High-frequency neural oscillations and visual processing deficits in schizophrenia , 2013, Front. Psychol..

[107]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[108]  Jonathan D. Victor,et al.  Metric-space analysis of spike trains: theory, algorithms and application , 1998, q-bio/0309031.

[109]  José María Amigó,et al.  Estimating the Entropy Rate of Spike Trains via Lempel-Ziv Complexity , 2004, Neural Computation.

[110]  B. Boycott,et al.  Morphological Classification of Bipolar Cells of the Primate Retina , 1991, The European journal of neuroscience.

[111]  Vaughn L. Hetrick,et al.  Functional clustering algorithm for the analysis of dynamic network data. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[113]  Christian J. Kellner,et al.  A distributed code for color in natural scenes derived from center-surround filtered cone signals , 2013, Front. Psychol..

[114]  H. V. Gersdorff,et al.  Synaptic Transmission , 2008 .

[115]  J. Mink,et al.  Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. , 1981, The American journal of physiology.

[116]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[117]  M. Shapiro,et al.  Bidirectional changes to hippocampal theta–gamma comodulation predict memory for recent spatial episodes , 2010, Proceedings of the National Academy of Sciences.

[118]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[119]  M A Nicolelis,et al.  Neonatal whisker removal reduces the discrimination of tactile stimuli by thalamic ensembles in adult rats. , 1997, Journal of neurophysiology.

[120]  L. Luo,et al.  High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity , 2013, Proceedings of the National Academy of Sciences.

[121]  S. McKee A local mechanism for differential velocity detection , 1981, Vision Research.

[122]  R. Christopher deCharms,et al.  Primary cortical representation of sounds by the coordination of action-potential timing , 1996, Nature.

[123]  Valentin Dragoi,et al.  Adaptive Changes in Neuronal Synchronization in Macaque V4 , 2011, The Journal of Neuroscience.

[124]  William R. Softky,et al.  Sub-millisecond coincidence detection in active dendritic trees , 1994, Neuroscience.

[125]  B. Cleland,et al.  Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. , 1977, Journal of neurophysiology.

[126]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[127]  R. Shapley,et al.  The origin of the S (slow) potential in the mammalian Lateral Geniculate Nucleus , 1984, Experimental Brain Research.

[128]  R. Quiroga,et al.  Extracting information from neuronal populations : information theory and decoding approaches , 2022 .

[129]  Ido Kanter,et al.  Sudden synchrony leaps accompanied by frequency multiplications in neuronal activity , 2013, Front. Neural Circuits.

[130]  H. Nyquist,et al.  Certain factors affecting telegraph speed , 1924, Journal of the A.I.E.E..

[131]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[132]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[133]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[134]  Nicholas Pippenger Reliable Computation in the Presence of Noise , 1986 .

[135]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[136]  Roxana A. Stefanescu,et al.  Recognition memory and theta–gamma interactions in the hippocampus , 2014, Hippocampus.

[137]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .

[138]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[139]  José María Amigó,et al.  Mutual information and redundancy in spontaneous communication between cortical neurons , 2011, Biological Cybernetics.

[140]  Stefano Panzeri,et al.  Data-Robust Tight Lower Bounds to the Information Carried by Spike Times of a Neuronal Population , 2005, Neural Computation.

[141]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[142]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[143]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[144]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[145]  Kristen Castaldo,et al.  Firing coincidences between neighboring retinal ganglion cells: inside information or epiphenomenon? , 2002, Bio Systems.

[146]  Maurizio Codispoti,et al.  Early Spatial Frequency Processing of Natural Images: An ERP Study , 2013, PloS one.

[147]  Jonathon Shlens,et al.  Estimating Entropy Rates with Bayesian Confidence Intervals , 2005, Neural Computation.

[148]  Daeyeol Lee,et al.  Effects of noise correlations on information encoding and decoding. , 2006, Journal of neurophysiology.

[149]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[150]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[151]  W. Bair,et al.  Correlated Firing in Macaque Visual Area MT: Time Scales and Relationship to Behavior , 2001, The Journal of Neuroscience.

[152]  Eero P. Simoncelli,et al.  Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis. , 2006, Journal of vision.

[153]  C. Koch,et al.  Encoding of visual information by LGN bursts. , 1999, Journal of neurophysiology.

[154]  Daeyeol Lee,et al.  Neural Noise and Movement-Related Codes in the Macaque Supplementary Motor Area , 2003, The Journal of Neuroscience.

[155]  Lawrence C. Sincich,et al.  Transmission of Spike Trains at the Retinogeniculate Synapse , 2007, The Journal of Neuroscience.

[156]  K. Deisseroth,et al.  Engineering Approaches to Illuminating Brain Structure and Dynamics , 2013, Neuron.

[157]  Viviana Betti,et al.  Natural Scenes Viewing Alters the Dynamics of Functional Connectivity in the Human Brain , 2013, Neuron.

[158]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[159]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[160]  Günther Palm,et al.  Cell assemblies in the cerebral cortex , 2014, Biological Cybernetics.

[161]  Naftali Tishby,et al.  Synergy and Redundancy among Brain Cells of Behaving Monkeys , 1998, NIPS.

[162]  David H. Brainard,et al.  Calibration of a computer controlled color monitor , 1989 .

[163]  L. F Abbott,et al.  Lapicque’s introduction of the integrate-and-fire model neuron (1907) , 1999, Brain Research Bulletin.

[164]  R. Wurtz,et al.  Guarding the gateway to cortex: attention in visual thalamus , 2008, Nature.

[165]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[166]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[167]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[168]  Stefano Panzeri,et al.  Correcting for the sampling bias problem in spike train information measures. , 2007, Journal of neurophysiology.

[169]  A. Sillito,et al.  Corticothalamic feedback enhances stimulus response precision in the visual system , 2007, Proceedings of the National Academy of Sciences.

[170]  Robert A. Frazor,et al.  Independence of luminance and contrast in natural scenes and in the early visual system , 2005, Nature Neuroscience.

[171]  V. Hateren,et al.  Processing of natural time series of intensities by the visual system of the blowfly , 1997, Vision Research.

[172]  Jan Drewes,et al.  Animal Detection in Natural Images: Effects of Color and Image Database , 2011, PloS one.

[173]  Aurel A. Lazar,et al.  Information theory in neuroscience , 2011, Journal of Computational Neuroscience.

[174]  Michael J. Berry,et al.  Synergy, Redundancy, and Independence in Population Codes , 2003, The Journal of Neuroscience.

[175]  Eero P. Simoncelli,et al.  Efficient Coding of Spatial Information in the Primate Retina , 2012, The Journal of Neuroscience.

[176]  Peter Dayan,et al.  The Effect of Correlated Variability on the Accuracy of a Population Code , 1999, Neural Computation.

[177]  Idan Segev,et al.  The information efficacy of a synapse , 2002, Nature Neuroscience.

[178]  A. Aertsen,et al.  Dynamics of neuronal interactions in monkey cortex in relation to behavioural events , 1995, Nature.

[179]  P. Latham,et al.  Synergy, Redundancy, and Independence in Population Codes, Revisited , 2005, The Journal of Neuroscience.

[180]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[181]  Charles J. Wilson,et al.  Up and down states , 2008, Scholarpedia.

[182]  W. Levick,et al.  Simultaneous recording of input and output of lateral geniculate neurones. , 1971, Nature: New biology.

[183]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 1988, Experimental Brain Research.

[184]  Chethan Pandarinath,et al.  Retinal prosthetic strategy with the capacity to restore normal vision , 2012, Proceedings of the National Academy of Sciences.

[185]  James P. Crutchfield,et al.  An Algorithm for Pattern Discovery in Time Series , 2002, ArXiv.

[186]  C E Carr,et al.  Processing of temporal information in the brain. , 1993, Annual review of neuroscience.

[187]  A. Aertsen,et al.  Neuronal assemblies , 1989, IEEE Transactions on Biomedical Engineering.

[188]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[189]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[190]  Paul R. Martin,et al.  Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus , 1996, The Journal of comparative neurology.

[191]  H. K. Hartline,et al.  THE EFFECTS OF SPATIAL SUMMATION IN THE RETINA ON THE EXCITATION OF THE FIBERS OF THE OPTIC NERVE , 1940 .

[192]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[193]  Ehud Kaplan,et al.  Estimating the Amount of Information Conveyed by a Population of Neurons , 2011, Front. Neurosci..

[194]  Lawrence C. Sincich,et al.  Preserving Information in Neural Transmission , 2009, The Journal of Neuroscience.

[195]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[196]  F. Mechler,et al.  Formal and attribute-specific information in primary visual cortex. , 2001, Journal of neurophysiology.

[197]  Ralph A DiCaprio,et al.  Information transfer rate of nonspiking afferent neurons in the crab. , 2004, Journal of neurophysiology.

[198]  Sennay Ghebreab,et al.  From Image Statistics to Scene Gist: Evoked Neural Activity Reveals Transition from Low-Level Natural Image Structure to Scene Category , 2013, The Journal of Neuroscience.

[199]  Michele Bezzi,et al.  Redundancy and Synergy Arising from Pairwise Correlations in Neuronal Ensembles , 2002, Journal of Computational Neuroscience.

[200]  Stefano Panzeri,et al.  Information-theoretic methods for studying population codes , 2010, Neural Networks.

[201]  D. Johnston,et al.  Temporal synchrony and gamma to theta power conversion in the dendrites of CA1 pyramidal neurons , 2013, Nature Neuroscience.

[202]  M. Carandini,et al.  Functional Mechanisms Shaping Lateral Geniculate Responses to Artificial and Natural Stimuli , 2008, Neuron.

[203]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[204]  G. Buzsáki,et al.  Temporal Encoding of Place Sequences by Hippocampal Cell Assemblies , 2006, Neuron.

[205]  Yoshio Sakurai,et al.  Population coding by cell assemblies—what it really is in the brain , 1996, Neuroscience Research.

[206]  S. Panzeri,et al.  An exact method to quantify the information transmitted by different mechanisms of correlational coding. , 2003, Network.