Robust Multi-Robot Trajectory Generation Using Alternating Direction Method of Multiplier

Robust Multi-Robot Trajectory Generation Using Alternating Direction Method of Multiplier Ruiqi Ni, Zherong Pan and Xifeng Gao Abstract—We propose a variant of alternating direction method of multiplier (ADMM) to solve constrained trajectory optimization problems. Our ADMM framework breaks a joint optimization into small sub-problems, leading to a low iteration cost and decentralized parameter updates. Our method inherits the theoretical properties of primal interior point method (P-IPM), i.e., guaranteed collision avoidance and homotopy preservation, while being orders of magnitude faster. We have analyzed the convergence and evaluated our method for timeoptimal multi-UAV trajectory optimizations and simultaneous goal-reaching of multiple robot arms, where we take into consider kinematics-, dynamics-limits, and homotopy-preserving collision constraints. Our method highlights 10 − 100× speedup, while generating trajectories of comparable qualities as state-of-theart P-IPM solver.

[1]  Jonathan P. How,et al.  FASTER: Fast and Safe Trajectory Planner for Navigation in Unknown Environments , 2020, IEEE Transactions on Robotics.

[2]  Shuran Song,et al.  Learning a Decentralized Multi-arm Motion Planner , 2020, CoRL.

[3]  Benedikt Wirth,et al.  Optimization Methods on Riemannian Manifolds and Their Application to Shape Space , 2012, SIAM J. Optim..

[4]  Lawrence F. Shampine,et al.  A User’s View of Solving Stiff Ordinary Differential Equations , 1979 .

[5]  C. J. Taylor,et al.  Minimization on the Lie Group SO(3) and Related Manifolds , 1994 .

[6]  Zhaodan Kong,et al.  A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance , 2010, J. Intell. Robotic Syst..

[7]  Ralph L. Hollis,et al.  Differentially flat trajectory generation for a dynamically stable mobile robot , 2013, 2013 IEEE International Conference on Robotics and Automation.

[8]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[9]  Paulo Tabuada,et al.  Control Barrier Functions: Theory and Applications , 2019, 2019 18th European Control Conference (ECC).

[10]  Kris Hauser,et al.  Semi-infinite programming for trajectory optimization with non-convex obstacles , 2021, Int. J. Robotics Res..

[11]  Andrea Maria Zanchettin,et al.  Trajectory generation algorithm for safe human-robot collaboration based on multiple depth sensor measurements , 2018, Mechatronics.

[12]  Vijay Kumar,et al.  Time-optimal UAV trajectory planning for 3D urban structure coverage , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[14]  Wotao Yin,et al.  A Globally Convergent Algorithm for Nonconvex Optimization Based on Block Coordinate Update , 2014, J. Sci. Comput..

[15]  Xin Zhou,et al.  EGO-Planner: An ESDF-Free Gradient-Based Local Planner for Quadrotors , 2020, IEEE Robotics and Automation Letters.

[16]  Yi Lin,et al.  Online Safe Trajectory Generation for Quadrotors Using Fast Marching Method and Bernstein Basis Polynomial , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[17]  Emilio Frazzoli,et al.  Anytime Motion Planning using the RRT* , 2011, 2011 IEEE International Conference on Robotics and Automation.

[18]  Chenghao Lan,et al.  Efficiency of Coordinate Descent Methods For Structured Nonconvex Optimization , 2019, ECML/PKDD.

[19]  Xin Zhou,et al.  Alternating Minimization Based Trajectory Generation for Quadrotor Aggressive Flight , 2020, IEEE Robotics and Automation Letters.

[20]  Dimitri N. Mavris,et al.  Multi-UAV Trajectory Optimization Utilizing a NURBS-Based Terrain Model for an Aerial Imaging Mission , 2020, J. Intell. Robotic Syst..

[21]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[22]  G. Vasudevan,et al.  A Homotopy Approach for Solving Constrained Optimization Problems , 1989, 1989 American Control Conference.

[23]  Yuval Tassa,et al.  MuJoCo: A physics engine for model-based control , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Yoji Kuroda,et al.  Potential Field Navigation of High Speed Unmanned Ground Vehicles on Uneven Terrain , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[25]  Dimitra Panagou,et al.  Motion planning and collision avoidance using navigation vector fields , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Xin Zhou,et al.  Geometrically Constrained Trajectory Optimization for Multicopters , 2021, ArXiv.

[27]  Ettore Barbieri,et al.  Improving the GJK algorithm for faster and more reliable distance queries between convex objects , 2017, TOGS.

[28]  Dinesh Manocha,et al.  Efficient Solver for Spacetime Control of Smoke , 2017, ACM Trans. Graph..

[29]  Stephen P. Boyd,et al.  Globally Convergent Type-I Anderson Acceleration for Nonsmooth Fixed-Point Iterations , 2018, SIAM J. Optim..

[30]  Jonathan P. How,et al.  FASTER: Fast and Safe Trajectory Planner for Flights in Unknown Environments , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[31]  Zhihua Qu,et al.  A new analytical solution to mobile robot trajectory generation in the presence of moving obstacles , 2004, IEEE Transactions on Robotics.

[32]  Leo Hartman,et al.  Anytime dynamic path-planning with flexible probabilistic roadmaps , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[33]  Chong-Ho Choi,et al.  An effective trajectory generation method for bipedal walking , 2007, Robotics Auton. Syst..

[34]  Yi Lin,et al.  Gradient-based online safe trajectory generation for quadrotor flight in complex environments , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[35]  Shiqian Ma,et al.  Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis , 2016, Computational Optimization and Applications.

[36]  Xin Zhou,et al.  EGO-Swarm: A Fully Autonomous and Decentralized Quadrotor Swarm System in Cluttered Environments , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[37]  Zilong Cheng,et al.  Semi-Proximal ADMM for Model Predictive Control Problem with Application to a UAV System , 2020, 2020 20th International Conference on Control, Automation and Systems (ICCAS).

[38]  Ye Zhao,et al.  Accelerated ADMM based Trajectory Optimization for Legged Locomotion with Coupled Rigid Body Dynamics , 2020, 2020 American Control Conference (ACC).

[39]  Daniele Panozzo,et al.  Robust & Asymptotically Locally Optimal UAV-Trajectory Generation Based on Spline Subdivision , 2020, ArXiv.

[40]  Vijay Kumar,et al.  Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments , 2017, IEEE Robotics and Automation Letters.

[41]  Friedrich M. Wahl,et al.  Online Trajectory Generation: Basic Concepts for Instantaneous Reactions to Unforeseen Events , 2010, IEEE Transactions on Robotics.

[42]  Fei Gao,et al.  Robust and Efficient Quadrotor Trajectory Generation for Fast Autonomous Flight , 2019, IEEE Robotics and Automation Letters.

[43]  Chao Xu,et al.  Fast-Racing: An Open-Source Strong Baseline for $\mathrm{SE}(3)$ Planning in Autonomous Drone Racing , 2021, IEEE Robotics and Automation Letters.

[44]  J. Betts,et al.  Path-constrained trajectory optimization using sparse sequential quadratic programming , 1991 .

[45]  Angela P. Schoellig,et al.  Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex programming approach , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[46]  Gaurav S. Sukhatme,et al.  Trajectory Planning for Quadrotor Swarms , 2018, IEEE Transactions on Robotics.

[47]  Taeyoung Lee,et al.  Geometric tracking control of a quadrotor UAV on SE(3) , 2010, 49th IEEE Conference on Decision and Control (CDC).

[48]  Anders Robertsson,et al.  Trajectory Generation for Assembly Tasks Via Bilateral Teleoperation , 2014 .

[49]  Wenbo Gao,et al.  ADMM for multiaffine constrained optimization , 2018, Optim. Methods Softw..