Elementary Motion Detection in Drosophila: Algorithms and Mechanisms.

Motion in the visual world provides critical information to guide the behavior of sighted animals. Furthermore, as visual motion estimation requires comparisons of signals across inputs and over time, it represents a paradigmatic and generalizable neural computation. Focusing on the Drosophila visual system, where an explosion of technological advances has recently accelerated experimental progress, we review our understanding of how, algorithmically and mechanistically, motion signals are first computed.

[1]  A. Borst,et al.  Dendritic integration and its role in computing image velocity. , 1998, Science.

[2]  G. Gao,et al.  CRISPR/Cas9 Mediates Efficient Conditional Mutagenesis in Drosophila , 2014, G3: Genes, Genomes, Genetics.

[3]  R O Dror,et al.  Accuracy of velocity estimation by Reichardt correlators. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  James E. Fitzgerald,et al.  Symmetries in stimulus statistics shape the form of visual motion estimators , 2011, Proceedings of the National Academy of Sciences.

[5]  Ian A. Meinertzhagen,et al.  Candidate Neural Substrates for Off-Edge Motion Detection in Drosophila , 2014, Current Biology.

[6]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[7]  An estimation of the time constant of movement detectors , 1987, The Science of Nature.

[8]  M. Scanziani,et al.  Cortical direction selectivity emerges at convergence of thalamic synapses , 2018, Nature.

[9]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[10]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[11]  Ben Poole,et al.  Direction Selectivity in Drosophila Emerges from Preferred-Direction Enhancement and Null-Direction Suppression , 2016, The Journal of Neuroscience.

[12]  A. Borst,et al.  Internal Structure of the Fly Elementary Motion Detector , 2011, Neuron.

[13]  Damon A. Clark,et al.  Modular Use of Peripheral Input Channels Tunes Motion-Detecting Circuitry , 2013, Neuron.

[14]  H. Barlow,et al.  Selective Sensitivity to Direction of Movement in Ganglion Cells of the Rabbit Retina , 1963, Science.

[15]  Adam Bleckert,et al.  A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina , 2016, Neuron.

[16]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[17]  M. Affolter,et al.  Fluorescent fusion protein knockout mediated by anti-GFP nanobody , 2011, Nature Structural &Molecular Biology.

[18]  Alexander Borst,et al.  Object tracking in motion-blind flies , 2013, Nature Neuroscience.

[19]  Yvette E. Fisher,et al.  FlpStop, a tool for conditional gene control in Drosophila , 2017, eLife.

[20]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[21]  L. Palmer,et al.  Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat , 1989, Vision Research.

[22]  Alexander Borst,et al.  Optogenetic and Pharmacologic Dissection of Feedforward Inhibition in Drosophila Motion Vision , 2014, The Journal of Neuroscience.

[23]  A. Borst,et al.  Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila , 2012, Journal of Comparative Physiology.

[24]  Michael Z. Lin,et al.  Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo , 2016, Cell.

[25]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[26]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[27]  K. Butler Predatory behavior in laboratory mice: strain and sex comparisons. , 1973, Journal of comparative and physiological psychology.

[28]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[29]  Alexander Borst,et al.  Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila , 2010, Nature Neuroscience.

[30]  Michael B. Reiser,et al.  Neural correlates of illusory motion perception in Drosophila , 2011, Proceedings of the National Academy of Sciences.

[31]  A. Borst,et al.  Neural Circuit Components of the Drosophila OFF Motion Vision Pathway , 2014, Current Biology.

[32]  A. Borst,et al.  Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector , 2015, Current Biology.

[33]  J. Diamond,et al.  Functional Compartmentalization within Starburst Amacrine Cell Dendrites in the Retina , 2018, Cell reports.

[34]  F. Zettler,et al.  Decrement-free conduction of graded potentials along the axon of a monopolar neuron , 1971, Zeitschrift für vergleichende Physiologie.

[35]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[36]  Smith-Kettlewell,et al.  BIOLOGICAL IMAGE MOTION PROCESSING : A REVIEW , 2012 .

[37]  Georgios B. Giannakis,et al.  Image motion estimation algorithms using cumulants , 1995, IEEE Trans. Image Process..

[38]  R. Shapley,et al.  Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. , 1991, Journal of neurophysiology.

[39]  D. O'Malley,et al.  Co-release of acetylcholine and GABA by the starburst amacrine cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[41]  Reinhard Wolf,et al.  Motion vision is independent of color in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[42]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[43]  M. Egelhaaf,et al.  Temporal modulation of luminance adapts time constant of fly movement detectors , 1987, Biological Cybernetics.

[44]  G. D. Mccann,et al.  Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. , 1968, Journal of neurophysiology.

[45]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[46]  N. Franceschini,et al.  Motion detection in flies: Parametric control over ON-OFF pathways , 2004, Experimental Brain Research.

[47]  Werner Reichardt,et al.  Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.

[48]  Alexander Borst,et al.  Complementary mechanisms create direction selectivity in the fly , 2016, eLife.

[49]  James E. Fitzgerald,et al.  Nonlinear circuits for naturalistic visual motion estimation , 2015, eLife.

[50]  Y. Jan,et al.  L‐glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. , 1976, The Journal of physiology.

[51]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[52]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[53]  Optogenetic Neuronal Silencing in Drosophila during Visual Processing , 2017, Scientific Reports.

[54]  K. Hausen Functional Characterization and Anatomical Identification of Motion Sensitive Neurons in the Lobula plate of the Blowfly Calliphora erythrocephala , 1976 .

[55]  Michael S. Drews,et al.  The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements , 2017, Current Biology.

[56]  Nicholas J. Strausfeld,et al.  The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris , 1970, Zeitschrift für vergleichende Physiologie.

[57]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[58]  D. Ferster,et al.  Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. , 1993, Science.

[59]  Aljoscha Nern,et al.  The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila , 2017, eLife.

[60]  Damon A. Clark,et al.  Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.

[61]  Michael B. Reiser,et al.  Direct Observation of ON and OFF Pathways in the Drosophila Visual System , 2014, Current Biology.

[62]  E. Buchner,et al.  Autoradiographic localization of [3H]choline uptake in the brain of Drosophila melanogaster , 1983, Neuroscience Letters.

[63]  D. Papatsenko,et al.  A new rhodopsin in R 8 photoreceptors of Drosophila : evidence for coordinate expression with Rh 3 in R 7 cells , 1997 .

[64]  U. Wolfrum,et al.  Molecular cloning of Drosophila Rh6 rhodopsin: the visual pigment of a subset of R8 photoreceptor cells 1 , 1997, FEBS letters.

[65]  Matti Järvilehto,et al.  Lateral inhibition in an insect eye , 1972, Zeitschrift für vergleichende Physiologie.

[66]  I. Bülthoff Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. 2. Optomotor blind H31 and lobula plate-less N684 visual mutants. , 1985 .

[67]  A. Borst,et al.  A common directional tuning mechanism of Drosophila motion-sensing neurons in the ON and in the OFF pathway , 2017, eLife.

[68]  Yvette E. Fisher,et al.  Orientation Selectivity Sharpens Motion Detection in Drosophila , 2015, Neuron.

[69]  A. Borst,et al.  Comprehensive Characterization of the Major Presynaptic Elements to the Drosophila OFF Motion Detector , 2016, Neuron.

[70]  W. Reichardt,et al.  Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[71]  G. D. McCann,et al.  Development and application of white-noise modeling techniques for studies of insect visual nervous system , 1973, Kybernetik.

[72]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[73]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[74]  Shin-ya Takemura,et al.  Synaptic circuits of the Drosophila optic lobe: The input terminals to the medulla , 2008, The Journal of comparative neurology.

[75]  M. Tachibana,et al.  A Key Role of Starburst Amacrine Cells in Originating Retinal Directional Selectivity and Optokinetic Eye Movement , 2001, Neuron.

[76]  A. Borst,et al.  Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation , 2016, Nature Neuroscience.

[77]  K. Fischbach,et al.  Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli , 1992, Cell and Tissue Research.

[78]  Thomas R. Clandinin,et al.  A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection , 2015, Current Biology.

[79]  G. D. Mccann,et al.  Optomotor response studies of insect vision , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[80]  W. R. Taylor,et al.  The role of starburst amacrine cells in visual signal processing , 2012, Visual Neuroscience.

[81]  Alexander Borst,et al.  Functional Specialization of Parallel Motion Detection Circuits in the Fly , 2013, The Journal of Neuroscience.

[82]  Justin M. Ales,et al.  Flies and humans share a motion estimation strategy that exploits natural scene statistics , 2014, Nature Neuroscience.

[83]  A. Borst,et al.  What kind of movement detector is triggering the landing response of the housefly? , 1986, Biological Cybernetics.

[84]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[85]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[86]  H. Bellen,et al.  A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells , 2017, eLife.

[87]  M. Schnitzer,et al.  GABAergic Lateral Interactions Tune the Early Stages of Visual Processing in Drosophila , 2013, Neuron.

[88]  Louis K. Scheffer,et al.  Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. , 2011, Current biology : CB.

[89]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[90]  Martina Medkovatt,et al.  Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio , 2004 .

[91]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[92]  Alexander Borst,et al.  Visual Circuits for Direction Selectivity. , 2017, Annual review of neuroscience.

[93]  R. Hardie,et al.  Three classes of potassium channels in large monopolar cells of the blowfly Calliphora vicina , 1990, Journal of Comparative Physiology A.

[94]  Michael B. Reiser,et al.  Contributions of the 12 Neuron Classes in the Fly Lamina to Motion Vision , 2013, Neuron.

[95]  Ian A. Meinertzhagen,et al.  Cholinergic Circuits Integrate Neighboring Visual Signals in a Drosophila Motion Detection Pathway , 2011, Current Biology.

[96]  A. Borst,et al.  Neural Mechanisms for Drosophila Contrast Vision , 2015, Neuron.

[97]  Yan Zhu,et al.  Peripheral Visual Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly , 2009, Current Biology.

[98]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[99]  Michael B. Reiser,et al.  Simple integration of fast excitation and offset, delayed inhibition computes directional selectivity in Drosophila , 2017, Nature Neuroscience.

[100]  B. Cohen,et al.  Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after‐nystagmus , 1977, The Journal of physiology.

[101]  Fabrizio Gabbiani,et al.  Collision detection as a model for sensory-motor integration. , 2011, Annual review of neuroscience.

[102]  Dario L. Ringach,et al.  Flies see second-order motion , 2008, Current Biology.

[103]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[104]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[105]  B. Hassenstein,et al.  Ommatidienraster und afferente Bewegungsintegration , 1951, Zeitschrift für vergleichende Physiologie.

[106]  N. Strausfeld,et al.  Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[107]  Michael B. Reiser,et al.  The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila , 2017, Neuron.

[108]  Rachel I. Wilson,et al.  Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system , 2013, Proceedings of the National Academy of Sciences.

[109]  G. ALsnEcHr,et al.  VISUAL CORTICAL RECEPTIVE FIELDS IN MONKEY AND CAT: SPATIAL AND TEMPORAL PHASE TRANSFER FUNCTION , 1989 .

[110]  J. M. Zanker,et al.  Visual detection of paradoxical motion in flies , 1991, Journal of Comparative Physiology A.

[111]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[112]  J. J. Tukker,et al.  Direction selectivity in a model of the starburst amacrine cell , 2004, Visual Neuroscience.

[113]  P. Detwiler,et al.  A Dendrite-Autonomous Mechanism for Direction Selectivity in Retinal Starburst Amacrine Cells , 2007, PLoS biology.

[114]  Alon Poleg-Polsky,et al.  Species-specific wiring for direction selectivity in the mammalian retina , 2016, Nature.

[115]  A. Dubs The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance , 1982, Journal of comparative physiology.

[116]  Erich Buchner,et al.  Behavioural Analysis of Spatial Vision in Insects , 1984 .

[117]  Richard L. Martin,et al.  The Drosophila ninaE gene encodes an opsin , 1985, Cell.

[118]  M. Livingstone,et al.  Mechanisms of Direction Selectivity in Macaque V1 , 1998, Neuron.

[119]  Lewis G. Bishop,et al.  On the identification of movement detectors in the fly optic lobe , 2004, Journal of comparative physiology.

[120]  Matthew S. Creamer,et al.  Direct Measurement of Correlation Responses in Drosophila Elementary Motion Detectors Reveals Fast Timescale Tuning , 2016, Neuron.

[121]  Alexander Y Katsov,et al.  Motion Processing Streams in Drosophila Are Behaviorally Specialized , 2008, Neuron.

[122]  L. Chadwell,et al.  Identification of a Novel Drosophila Opsin Reveals Specific Patterning of the R7 and R8 Photoreceptor Cells , 1996, Neuron.

[123]  Charles P. Ratliff,et al.  Retina is structured to process an excess of darkness in natural scenes , 2010, Proceedings of the National Academy of Sciences.

[124]  Karl Georg Götz,et al.  Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.

[125]  Hendrik Eckert,et al.  Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L , 1973, Kybernetik.

[126]  T. J. Wardill,et al.  Multiple Spectral Inputs Improve Motion Discrimination in the Drosophila Visual System , 2012, Science.

[127]  W. Reichardt,et al.  Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly , 1987, Biological Cybernetics.

[128]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[129]  Simon B. Laughlin,et al.  Form and function in retinal processing , 1987, Trends in Neurosciences.

[130]  Alexander Borst,et al.  Neural mechanisms underlying sensitivity to reverse-phi motion in the fly , 2017, PloS one.