Static and dynamic views of visual cortical organization.

[1]  R. Yuste,et al.  Stereotyped position of local synaptic targets in neocortex. , 2001, Science.

[2]  M. Sur,et al.  Foci of orientation plasticity in visual cortex , 2001, Nature.

[3]  S. Sherman Tonic and burst firing: dual modes of thalamocortical relay , 2001, Trends in Neurosciences.

[4]  J. Kaas,et al.  Connectional and Architectonic Evidence for Dorsal and Ventral V3, and Dorsomedial Area in Marmoset Monkeys , 2001, The Journal of Neuroscience.

[5]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[6]  C. Gilbert,et al.  Interactions between attention, context and learning in primary visual cortex , 2000, Vision Research.

[7]  D. Heeger,et al.  Task-related modulation of visual cortex. , 2000, Journal of neurophysiology.

[8]  Alessandra Angelucci,et al.  Induction of visual orientation modules in auditory cortex , 2000, Nature.

[9]  A. B. Bonds,et al.  Differential contributions of magnocellular and parvocellular pathways to the contrast response of neurons in bush baby primary visual cortex (V1) , 2000, Visual Neuroscience.

[10]  S. Sherman,et al.  Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys , 2000, Visual Neuroscience.

[11]  G Westheimer,et al.  Dynamics of spatial summation in primary visual cortex of alert monkeys. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  T. Bonhoeffer,et al.  Development of orientation preference in the mammalian visual cortex. , 1999, Journal of neurobiology.

[13]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[14]  V. Casagrande,et al.  Relationships between cytochrome oxidase (CO) blobs in primate primary visual cortex (V1) and the distribution of neurons projecting to the middle temporal area (MT) , 1999, The Journal of comparative neurology.

[15]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  C. Gilbert,et al.  Attention Modulates Contextual Influences in the Primary Visual Cortex of Alert Monkeys , 1999, Neuron.

[17]  K Ugurbil,et al.  Human primary visual cortex and lateral geniculate nucleus activation during visual imagery , 1998, Neuroreport.

[18]  Pieter R. Roelfsema,et al.  Object-based attention in the primary visual cortex of the macaque monkey , 1998, Nature.

[19]  C. Gilbert Adult cortical dynamics. , 1998, Physiological reviews.

[20]  U. Polat,et al.  Collinear stimuli regulate visual responses depending on cell's contrast threshold , 1998, Nature.

[21]  R. Shapley,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[22]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[23]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[24]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[25]  M. Stryker,et al.  Development of Orientation Preference Maps in Ferret Primary Visual Cortex , 1996, The Journal of Neuroscience.

[26]  M. Sur,et al.  Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Trichur Raman Vidyasagar,et al.  Multiple mechanisms underlying the orientation selectivity of visual cortical neurones , 1996, Trends in Neurosciences.

[28]  A. B. Bonds,et al.  GABAB-receptor-mediated inhibition reduces the orientation selectivity of the sustained response of striate cortical neurons in cats , 1996, Visual Neuroscience.

[29]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[30]  A. B. Bonds,et al.  The influence of input from the lower cortical layers on the orientation tuning of upper layer V1 cells in a primate , 1995, Visual Neuroscience.

[31]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[33]  J. Maunsell,et al.  Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[36]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[37]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[38]  J. Kaas,et al.  Ocular dominance columns in area 17 of Old World macaque and talapoin monkeys: Complete reconstructions and quantitative analyses , 1992, Visual Neuroscience.

[39]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[40]  A. B. Bonds Temporal dynamics of contrast gain in single cells of the cat striate cortex , 1991, Visual Neuroscience.

[41]  D. McCormick,et al.  Functional implications of burst firing and single spike activity in lateral geniculate relay neurons , 1990, Neuroscience.

[42]  J. Maunsell,et al.  Macaque vision after magnocellular lateral geniculate lesions , 1990, Visual Neuroscience.

[43]  N. Logothetis,et al.  Role of the color-opponent and broad-band channels in vision , 1990, Visual Neuroscience.

[44]  R. Sturrock Cajal on the Cerebral Cortex. , 1990 .

[45]  T. Wiesel,et al.  Pharmacological analysis of cortical circuitry , 1989, Trends in Neurosciences.

[46]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[47]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[48]  S. Zucker,et al.  Endstopped neurons in the visual cortex as a substrate for calculating curvature , 1987, Nature.

[49]  V. Casagrande,et al.  Changes in the distribution of geniculocortical projections following monocular deprivation in tree shrews , 1986, Brain Research.

[50]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  J. Lund,et al.  Widespread periodic intrinsic connections in the tree shrew visual cortex. , 1982, Science.

[52]  P. Schiller,et al.  Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. , 1981, Journal of neurophysiology.

[53]  D. Hubel,et al.  Effects of sleep and arousal on the processing of visual information in the cat , 1981, Nature.

[54]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[55]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[56]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[57]  D. Hubel,et al.  Binocular interaction in striate cortex of kittens reared with artificial squint. , 1965, Journal of neurophysiology.

[58]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[59]  Paul G. Roofe,et al.  The Vertebrate Visual System , 1958, Neurology.

[60]  O. L. Zangwill,et al.  Localization in the Cerebral Cortex , 1954, Nature.

[61]  H. K. Hartline,et al.  THE RECEPTIVE FIELDS OF OPTIC NERVE FIBERS , 1940 .

[62]  W. H. Wollaston Of Semi-Decussation of the Optic Nerves , 1825 .

[63]  P. H. Schiller,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[64]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[65]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[66]  J. Morrison,et al.  Chapter II Neurochemical organization of the primate visual cortex , 1998 .

[67]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[68]  Anders Björklund,et al.  The primate nervous system , 1997 .

[69]  Vivien A. Casagrande,et al.  The Afferent, Intrinsic, and Efferent Connections of Primary Visual Cortex in Primates , 1994 .

[70]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[71]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[72]  S. Cajal Cajal on the cerebral cortex , 1988 .

[73]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[74]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[75]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[76]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[77]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[78]  W. Andrew The vertebrate visual system , 1957 .

[79]  S. Cajal Neuron theory or reticular theory? Objective evidence of the anatomical unity of nerve cells. , 1954 .

[80]  Hermann Munk OF THE VISUAL AREA OF THE CEREBRAL CORTEX, AND ITS RELATION TO EYE MOVEMENTS , 1890 .