Interpolating solid orientations with circular blending quaternion curves

[1]  William Rowan Hamilton,et al.  Elements of Quaternions , 1969 .

[2]  E. Catmull,et al.  A CLASS OF LOCAL INTERPOLATING SPLINES , 1974 .

[3]  David F. Rogers,et al.  Mathematical elements for computer graphics , 1976 .

[4]  J. A. Brewer,et al.  Visual interaction with overhauser curves and surfaces , 1977, SIGGRAPH '77.

[5]  Wolfgang Böhm,et al.  On cubics: A survey , 1982, Comput. Graph. Image Process..

[6]  Matthew T. Mason,et al.  Robot Motion: Planning and Control , 1983 .

[7]  B. Donald Motion Planning with Six Degrees of Freedom , 1984 .

[8]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[9]  Daniel Thalmann,et al.  Computer animation - theory and practice , 1985, Computer science workbench.

[10]  D. Sattinger,et al.  Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics , 1986 .

[11]  Bruce Randall Donald,et al.  A Search Algorithm for Motion Planning with Six Degrees of Freedom , 1987, Artif. Intell..

[12]  Daniel Thalmann,et al.  New Trends in Computer Graphics , 1988, Springer Berlin Heidelberg.

[13]  Ron Goldman,et al.  De Casteljau-type subdivision is peculiar to Be´zier curves , 1988 .

[14]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[15]  D. Pletincks The Use of Quaternions for Animation, Modelling and Rendering , 1988 .

[16]  Ron Goldman,et al.  A recursive evaluation algorithm for a class of Catmull-Rom splines , 1988, SIGGRAPH.

[17]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[18]  Michael F. Cohen,et al.  State of the Art in Image Synthesis , 1990, Advances in Computer Graphics.

[19]  J. Schlag VIII.4 – USING GEOMETRIC CONSTRUCTIONS TO INTERPOLATE ORIENTATION WITH QUATERNIONS , 1991 .

[20]  John F. Hughes,et al.  Smooth interpolation of orientations with angular velocity constraints using quaternions , 1992, SIGGRAPH.

[21]  Kai Cieliebak,et al.  Symplectic Geometry , 1992, New Spaces in Physics.

[22]  David B. Kirk,et al.  Graphics Gems III , 1992 .

[23]  Jack Morrison Quaternion interpolation with Extra spins , 1992, Graphics Gems III.

[24]  Ken Shoemake,et al.  ARCBALL: a user interface for specifying three-dimensional orientation using a mouse , 1992 .

[25]  G. Nielson Smooth Interpolation of Orientations , 1993 .

[26]  B. Joe,et al.  Orientation interpolation in quaternion space using spherical biarcs , 1993 .

[27]  James Arvo,et al.  Graphics Gems II , 1994 .

[28]  Kee-Won Nam,et al.  Hermite Interpolation of Solid Orientations with Circular Blending Quaternion Curves , 1996 .

[29]  Sung-yong Shin,et al.  A Compact Differential Formula for the First Derivative of a Unit Quaternion Curve , 1996 .