Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex

The architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1’s intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point process, the predicted layouts remain distinct from experimental observations and resemble Gaussian random fields. We conclude that V1 layout invariants are specific quantitative signatures of visual cortical optimization, which cannot be explained by generic random feedforward-wiring models.

[1]  K. Obermayer,et al.  Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys , 1995, Visual Neuroscience.

[2]  Andrea L. Cirranello,et al.  The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals , 2013, Science.

[3]  M. Carandini,et al.  Neuronal Selectivity and Local Map Structure in Visual Cortex , 2008, Neuron.

[4]  David Fitzpatrick,et al.  Emergent Properties of Layer 2/3 Neurons Reflect the Collinear Arrangement of Horizontal Connections in Tree Shrew Visual Cortex , 2003, The Journal of Neuroscience.

[5]  M. V. Tsodyks,et al.  Intracortical origin of visual maps , 2001, Nature Neuroscience.

[6]  Isaac Amidror,et al.  The Theory of the Moiré Phenomenon , 2000, Computational Imaging and Vision.

[7]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[8]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[9]  Fredric M. Wolf,et al.  Coordinated Optimization of Visual Cortical Maps (I) Symmetry-based Analysis , 2011, PLoS Comput. Biol..

[10]  D. Ringach Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. , 2002, Journal of neurophysiology.

[11]  Richard Durbin,et al.  A dimension reduction framework for understanding cortical maps , 1990, Nature.

[12]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[13]  Fred Wolf,et al.  Pinwheel stabilization by ocular dominance segregation. , 2009, Physical review letters.

[14]  F. Wolf,et al.  Spontaneous pinwheel annihilation during visual development , 1998, Nature.

[15]  W. Levick,et al.  Orientation bias of cat retinal ganglion cells , 1980, Nature.

[16]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[17]  Moshe Gur,et al.  Cerebral Cortex doi:10.1093/cercor/bhi003 Orientation and Direction Selectivity of Neurons in V1 of Alert Monkeys: Functional Relationships and Laminar Distributions , 2022 .

[18]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[19]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[20]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[21]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[22]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[23]  F. Wolf,et al.  Genetic Influence on Quantitative Features of Neocortical Architecture , 2002, The Journal of Neuroscience.

[24]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[25]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[26]  F. Wolf,et al.  Universality in visual cortical pattern formation , 2003, Journal of Physiology-Paris.

[27]  D. Ringach,et al.  Dynamics of Spatial Frequency Tuning in Macaque V1 , 2002, The Journal of Neuroscience.

[28]  Isaac Amidror,et al.  The Theory of the Moiré Phenomenon - Volume I: Periodic Layers, Second Edition , 2009, Computational Imaging and Vision.

[29]  G D Field,et al.  Information processing in the primate retina: circuitry and coding. , 2007, Annual review of neuroscience.

[30]  F. Wolf Symmetry, multistability, and long-range interactions in brain development. , 2005, Physical review letters.

[31]  W. Murphy,et al.  Technical Comment on “The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals” , 2013, Science.

[32]  Jin Meng,et al.  Response to Comment on “The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals” , 2013, Science.

[33]  E. Chichilnisky,et al.  Direction Selectivity in the Retina Is Established Independent of Visual Experience and Cholinergic Retinal Waves , 2008, Neuron.

[34]  D. Ringach On the Origin of the Functional Architecture of the Cortex , 2007, PloS one.

[35]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[36]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[37]  C. von der Malsburg,et al.  Establishment of a Scaffold for Orientation Maps in Primary Visual Cortex of Higher Mammals , 2008, The Journal of Neuroscience.

[38]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[39]  Nicholas V. Swindale,et al.  Orientation tuning curves: empirical description and estimation of parameters , 1998, Biological Cybernetics.

[40]  Michael S. Landy,et al.  Nonlinear Model of Neural Responses in Cat Visual Cortex , 1991 .

[41]  D. L. Adams,et al.  Shadows Cast by Retinal Blood Vessels Mapped in Primary Visual Cortex , 2002, Science.

[42]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[43]  Dario L. Ringach,et al.  Link between orientation and retinotopic maps in primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[44]  Surya Ganguli,et al.  Statistical mechanics of compressed sensing. , 2010, Physical review letters.

[45]  Dario L. Ringach,et al.  Dynamics of spatial frequency tuning of macaque LGN , 2010 .

[46]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[47]  B. Boycott,et al.  Retinal ganglion cell density and cortical magnification factor in the primate , 1990, Vision Research.

[48]  F. Wolf Erratum: Symmetry, Multistability, and Long-Range Interactions in Brain Development [Phys. Rev. Lett. 95, 208701 (2005)] , 2009 .

[49]  Y. Chino,et al.  Orientation bias of neurons in the lateral geniculate nucleus of macaque monkeys , 1990, Visual Neuroscience.

[50]  H. Sompolinsky,et al.  Sparseness and Expansion in Sensory Representations , 2014, Neuron.

[51]  Lynn D. Selemon,et al.  Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects , 2007, Psychiatry Research.

[52]  Geoffrey J. Goodhill,et al.  Dynamics of cortical map development in the elastic net model , 2000, Neurocomputing.

[53]  D. Fitzpatrick The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. , 1996, Cerebral cortex.

[54]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[55]  Gerald Oster,et al.  Moire Patterns: Their Application to Refractive Index and Refractive Index Gradient Measurements , 1964 .

[56]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[57]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[58]  J. Alonso,et al.  Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex , 2011, Nature Neuroscience.

[59]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[60]  D. C. Essen,et al.  The topographic organization of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[61]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[62]  G. Goodhill Contributions of Theoretical Modeling to the Understanding of Neural Map Development , 2007, Neuron.

[63]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  Kate E. Jones,et al.  The delayed rise of present-day mammals , 1990, Nature.

[65]  Klaus Schulten,et al.  Models of Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical Comparison , 1995, Neural Computation.

[66]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[67]  H. Wässle,et al.  The retinal projection to the thalamus in the cat: A quantitative investigation and a comparison with the retinotectal pathway , 1981, The Journal of comparative neurology.

[68]  H. T. Blair,et al.  Scale-Invariant Memory Representations Emerge from Moiré Interference between Grid Fields That Produce Theta Oscillations: A Computational Model , 2007, The Journal of Neuroscience.

[69]  Fred Wolf,et al.  The pattern of ocular dominance columns in cat primary visual cortex: intra‐ and interindividual variability of column spacing and its dependence on genetic background , 2003, The European journal of neuroscience.

[70]  R E Soodak,et al.  Two-dimensional modeling of visual receptive fields using Gaussian subunits. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[71]  A. Leventhal,et al.  Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially , 1986, Brain Research.

[72]  L. Abbott,et al.  Random Convergence of Olfactory Inputs in the Drosophila Mushroom Body , 2013, Nature.

[73]  Xin Wang,et al.  Statistical Wiring of Thalamic Receptive Fields Optimizes Spatial Sampling of the Retinal Image , 2014, Neuron.

[74]  Thomas T. Norton,et al.  Organization of ocular dominance in tree shrew striate cortex , 1977, Brain Research.

[75]  N. Swindale,et al.  A model for the formation of orientation columns , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[76]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[78]  P. Hammond Cat retinal ganglion cells: size and shape of receptive field centres , 1974, The Journal of physiology.

[79]  R Kretz,et al.  Laminar organization of ON and OFF regions and ocular dominance in the striate cortex of the tree shrew (Tupaia belangeri) , 1986, The Journal of comparative neurology.

[80]  A. Leventhal,et al.  Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  H. Sompolinsky,et al.  Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. , 2012, Annual review of neuroscience.

[82]  A. Leventhal,et al.  Direction-sensitive X and Y cells within the A laminae of the cat's LGNd , 1994, Visual Neuroscience.

[83]  Geoffrey J Goodhill,et al.  The Effect of Angioscotomas on Map Structure in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[84]  D. Coppola,et al.  Universality in the Evolution of Orientation Columns in the Visual Cortex , 2010, Science.

[85]  Jon H. Kaas,et al.  The evolution of the complex sensory and motor systems of the human brain , 2008, Brain Research Bulletin.

[86]  Peter J Diggle,et al.  Homotypic constraints dominate positioning of on- and off-center beta retinal ganglion cells , 2005, Visual Neuroscience.

[87]  Se-Bum Paik Developmental models of functional maps in cortex , 2013 .

[88]  Hans-Joachim Kretschmann,et al.  Quantitative changes during the postnatal maturation of the human visual cortex , 1991, Journal of the Neurological Sciences.

[89]  J. Jurka,et al.  Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. , 2007, Trends in genetics : TIG.

[90]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996, Network.

[91]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[92]  V. Braitenberg,et al.  Geometry of orientation columns in the visual cortex , 1979, Biological Cybernetics.

[93]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[94]  Gregg E. Irvin,et al.  Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus , 1993, Visual Neuroscience.

[95]  J. Kaas Evolution of columns, modules, and domains in the neocortex of primates , 2012, Proceedings of the National Academy of Sciences.

[96]  P. H. Schiller,et al.  Spatial frequency and orientation tuning dynamics in area V1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[97]  D. Ringach,et al.  Retinal origin of orientation maps in visual cortex , 2011, Nature Neuroscience.

[98]  F. Wolf,et al.  Random waves in the brain: Symmetries and defect generation in the visual cortex , 2007 .

[99]  F. Wörgötter,et al.  Quantitative determination of orientational and directional components in the response of visual cortical cells to moving stimuli , 1987, Biological Cybernetics.

[100]  M. Stryker,et al.  Development of Orientation Preference Maps in Ferret Primary Visual Cortex , 1996, The Journal of Neuroscience.

[101]  Fred Wolf,et al.  Coverage, continuity, and visual cortical architecture , 2011, Neural systems & circuits.

[102]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[103]  G. Leuba,et al.  Changes in volume, surface estimate, three-dimensional shape and total number of neurons of the human primary visual cortex from midgestation until old age , 1994, Anatomy and Embryology.

[104]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  T. J. Robinson,et al.  Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification , 2011, Science.

[106]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[107]  J. Jonas,et al.  Count and density of human retinal photoreceptors , 2004, Graefe's Archive for Clinical and Experimental Ophthalmology.

[108]  W. Murphy,et al.  Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics , 2001, Science.

[109]  Stephen J Eglen,et al.  Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex. , 2012, Visual neuroscience.

[110]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[111]  N. Swindale,et al.  Receptive field and orientation scatter studied by tetrode recordings in cat area 17 , 1999, Visual Neuroscience.

[112]  Matthias Kaschube,et al.  Neural maps versus salt-and-pepper organization in visual cortex , 2014, Current Opinion in Neurobiology.

[113]  M. A. Carreira-Perpiñán,et al.  Influence of lateral connections on the structure of cortical maps. , 2004, Journal of neurophysiology.

[114]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[115]  Julie H. Culp,et al.  Transformation of Receptive Field Properties from Lateral Geniculate Nucleus to Superficial V1 in the Tree Shrew , 2013, The Journal of Neuroscience.

[116]  Fred Wolf,et al.  Interareal coordination of columnar architectures during visual cortical development , 2008, Proceedings of the National Academy of Sciences.

[117]  U. Dräger,et al.  Receptive fields of single cells and topography in mouse visual cortex , 1975, The Journal of comparative neurology.

[118]  M. Kiefmann,et al.  Retroposed Elements as Archives for the Evolutionary History of Placental Mammals , 2006, PLoS biology.

[119]  M. Cynader,et al.  Surface organization of orientation and direction selectivity in cat area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[120]  B. Boycott,et al.  Cortical magnification factor and the ganglion cell density of the primate retina , 1989, Nature.

[121]  Fred Wolf,et al.  Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex? , 2013, PloS one.

[122]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[123]  D. Coppola,et al.  Response to Comment on “Universality in the Evolution of Orientation Columns in the Visual Cortex“ , 2012, Science.

[124]  Dario L Ringach,et al.  Haphazard wiring of simple receptive fields and orientation columns in visual cortex. , 2004, Journal of neurophysiology.

[125]  R. Soodak The retinal ganglion cell mosaic defines orientation columns in striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[126]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[127]  D. Ferster Linearity of synaptic interactions in the assembly of receptive fields in cat visual cortex , 1994, Current Opinion in Neurobiology.

[128]  Fredric M. Wolf,et al.  Coordinated Optimization of Visual Cortical Maps (II) Numerical Studies , 2012, PLoS Comput. Biol..

[129]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[130]  F. Wolf,et al.  Self-organization and the selection of pinwheel density in visual cortical development , 2008, 0801.3651.

[131]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[132]  M. Berry,et al.  Knotted and linked phase singularities in monochromatic waves , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[133]  Ian Nauhaus,et al.  Anterior-Posterior Direction Opponency in the Superficial Mouse Lateral Geniculate Nucleus , 2012, Neuron.