Determination of parameter identifiability in nonlinear biophysical models: A Bayesian approach

A Bayesian approach can be used to determine the reliability of estimated parameters in biophysical models.

[1]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[2]  T Porumb Determination of calcium-binding constants by flow dialysis. , 1994, Analytical biochemistry.

[3]  Kenneth A. Johnson,et al.  Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data. , 2009, Analytical biochemistry.

[4]  James W. T. Yates,et al.  The design and analysis of parallel experiments to produce structurally identifiable models , 2013, Journal of Pharmacokinetics and Pharmacodynamics.

[5]  M B Jackson,et al.  Single‐Channel Recording , 1998, Current protocols in neuroscience.

[6]  J. Falke,et al.  Intermolecular tuning of calmodulin by target peptides and proteins: Differential effects on Ca2+ binding and implications for kinase activation , 1997, Protein science : a publication of the Protein Society.

[7]  Arild Thowsen,et al.  Structural identifiability , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[8]  K. Glover,et al.  Identifiability of linear and nonlinear dynamical systems , 1976 .

[9]  M L Johnson,et al.  Parameter estimation by least-squares methods. , 1992, Methods in enzymology.

[10]  Matthias Rief,et al.  Calcium-dependent folding of single calmodulin molecules , 2012, Proceedings of the National Academy of Sciences.

[11]  T. Rothenberg Identification in Parametric Models , 1971 .

[12]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[13]  D.G. Dudley,et al.  Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.

[14]  T. Lohman,et al.  Review of Wyman and Gill, Binding and Linkage: Functional Chemistry of Biological Macromolecules , 1993 .

[15]  Jorma Rissanen Optimal Estimation , 2011, ALT.

[16]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[17]  M Ikura,et al.  Molecular and structural basis of target recognition by calmodulin. , 1995, Annual review of biophysics and biomolecular structure.

[18]  M. Straume,et al.  Monte Carlo method for determining complete confidence probability distributions of estimated model parameters. , 1992, Methods in enzymology.

[19]  Fiona E Müllner,et al.  Improved hidden Markov models for molecular motors, part 1: basic theory. , 2010, Biophysical journal.

[20]  A. Hill The Combinations of Haemoglobin with Oxygen and with Carbon Monoxide. I. , 1913, The Biochemical journal.

[21]  R. Keynes,et al.  Kinetics and steady‐state properties of the charged system controlling sodium conductance in the squid giant axon , 1974, The Journal of physiology.

[22]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[23]  B Sakmann,et al.  Fast events in single‐channel currents activated by acetylcholine and its analogues at the frog muscle end‐plate. , 1985, The Journal of physiology.

[24]  R W Wallace,et al.  An endogenous Ca2+-dependent activator protein of brain adenylate cyclase and cyclic neucleotide phosphodiesterase. , 1978, Advances in cyclic nucleotide research.

[25]  J. J. Celentano,et al.  Use of the covariance matrix in directly fitting kinetic parameters: application to GABAA receptors. , 2004, Biophysical journal.

[26]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[27]  J Haiech,et al.  Effects of cations on affinity of calmodulin for calcium: ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes. , 1981, Biochemistry.

[28]  J. Pearson,et al.  Using independent open-to-closed transitions to simplify aggregated Markov models of ion channel gating kinetics. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[30]  A G Hawkes,et al.  The quality of maximum likelihood estimates of ion channel rate constants , 2003, The Journal of physiology.

[31]  Andrej Pázman,et al.  Nonlinear Regression , 2019, Handbook of Regression Analysis With Applications in R.

[32]  J. Arnold,et al.  An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  David J. Spiegelhalter,et al.  Introducing Markov chain Monte Carlo , 1995 .

[34]  K R Godfrey,et al.  Structural identifiability of the parameters of a nonlinear batch reactor model. , 1992, Mathematical biosciences.

[35]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[36]  W. Y. Cheung,et al.  Calmodulin plays a pivotal role in cellular regulation. , 1980, Science.

[37]  Jeremy L. Muhlich,et al.  Properties of cell death models calibrated and compared using Bayesian approaches , 2013, Molecular systems biology.

[38]  C. Cobelli,et al.  Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. , 1980, The American journal of physiology.

[39]  Edmund J Crampin,et al.  MCMC can detect nonidentifiable models. , 2012, Biophysical journal.

[40]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[41]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[42]  Michael B. Miller Linear Regression Analysis , 2013 .

[43]  J Barcroft,et al.  The Combinations of Haemoglobin with Oxygen and with Carbon Monoxide. II. , 1913, The Biochemical journal.

[44]  Walerian Kipiniak,et al.  Optimal Estimation, Identification, and Control , 1964 .

[45]  Jens Timmer,et al.  Data-based identifiability analysis of non-linear dynamical models , 2007, Bioinform..

[46]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[47]  J. Wallach Thermodynamic theory of site‐specific binding processes in biological macromolecules by E Di Cera. pp 296. Cambridge University Press. 1995 ISBN 0‐521‐41659‐0 , 1996 .

[48]  D. Colquhoun,et al.  Binding, gating, affinity and efficacy: The interpretation of structure‐activity relationships for agonists and of the effects of mutating receptors , 1998, British journal of pharmacology.

[49]  A. Auerbach,et al.  Maximum likelihood estimation of aggregated Markov processes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[50]  I Gustavsson,et al.  Survey of applications of identification in chemical and physical processes , 1975, Autom..

[51]  R I Jennrich,et al.  Fitting nonlinear models to data. , 1979, Annual review of biophysics and bioengineering.

[52]  Zachary B. Simpson,et al.  FitSpace explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data. , 2009, Analytical biochemistry.

[53]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[54]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[55]  Mitsuhiko Ikura,et al.  Calmodulin in Action Diversity in Target Recognition and Activation Mechanisms , 2002, Cell.

[56]  J. Cox,et al.  Sequential conformational changes in calmodulin upon binding of calcium , 1984 .

[57]  S. Linse,et al.  Calcium binding to calmodulin and its globular domains. , 1991, The Journal of biological chemistry.

[58]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[59]  Tjalling C. Koopmans,et al.  Identification problems in economic model construction , 1949 .

[60]  Bernd Weissmuller,et al.  Ligand Receptor Energetics A Guide For The Perplexed , 2016 .

[61]  Keegan E. Hines Inferring subunit stoichiometry from single molecule photobleaching , 2013, The Journal of general physiology.

[62]  G. Adair THE HEMOGLOBIN SYSTEM VI. THE OXYGEN DISSOCIATION CURVE OF HEMOGLOBIN , 1925 .

[63]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[64]  Ursula Klingmüller,et al.  Simulation Methods for Optimal Experimental Design in Systems Biology , 2003, Simul..

[65]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[66]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[67]  K. R. GODFREY,et al.  Factors affecting the identifiability of compartmental models , 1982, Autom..

[68]  E. Cera,et al.  Thermodynamic Theory of Site-Specific Binding Processes in Biological Macromolecules , 1996 .

[69]  David J. Klinke,et al.  An empirical Bayesian approach for model-based inference of cellular signaling networks , 2009, BMC Bioinformatics.

[70]  C. Klee,et al.  Positive cooperative binding of calcium to bovine brain calmodulin. , 1980, Biochemistry.

[71]  Eric Walter,et al.  QUALITATIVE AND QUANTITATIVE IDENTIFIABILITY ANALYSIS OF NONLINEAR CHEMICAL KINETIC MODELS , 1989 .

[72]  Michael L. Johnson Essential numerical computer methods , 2010 .

[73]  F. Bezanilla,et al.  Currents Related to Movement of the Gating Particles of the Sodium Channels , 1973, Nature.

[74]  S. Linse,et al.  Cooperativity: over the Hill. , 1995, Trends in biochemical sciences.

[75]  Marc S. Sherman,et al.  Calmodulin Target Database , 2004, Journal of Structural and Functional Genomics.

[76]  Melanie I. Stefan,et al.  BMC Systems Biology , 2022 .

[77]  Klaus Benndorf,et al.  How subunits cooperate in cAMP-induced activation of homotetrameric HCN2 channels. , 2012, Nature chemical biology.

[78]  P. Kienker Equivalence of aggregated Markov models of ion-channel gating , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[79]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[80]  Claudio Cobelli,et al.  Global identifiability of nonlinear models of biological systems , 2001, IEEE Transactions on Biomedical Engineering.

[81]  J. Jacquez,et al.  Numerical parameter identifiability and estimability: Integrating identifiability, estimability, and optimal sampling design , 1985 .