The Functional Microarchitecture of the Mouse Barrel Cortex

[1]  K. Svoboda,et al.  Interdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex , 2006, PLoS biology.

[2]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[3]  Karel Svoboda,et al.  Nonlinear [Ca2+] Signaling in Dendrites and Spines Caused by Activity-Dependent Depression of Ca2+ Extrusion , 2006, The Journal of Neuroscience.

[4]  E. Yaksi,et al.  Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging , 2006, Nature Methods.

[5]  R. Segev,et al.  How silent is the brain: is there a “dark matter” problem in neuroscience? , 2006, Journal of Comparative Physiology A.

[6]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[7]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[9]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[10]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[11]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[12]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[13]  F. Helmchen,et al.  Boosting of Action Potential Backpropagation by Neocortical Network Activity In Vivo , 2004, The Journal of Neuroscience.

[14]  F. Helmchen,et al.  Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo , 2004, Nature Methods.

[15]  M. DeWeese,et al.  Shared and private variability in the auditory cortex. , 2004, Journal of neurophysiology.

[16]  Charles J. Wilson,et al.  Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. , 2004, Journal of neurophysiology.

[17]  Karel Svoboda,et al.  Precise Development of Functional and Anatomical Columns in the Neocortex , 2004, Neuron.

[18]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[19]  G. Buzsáki,et al.  Calcium Dynamics of Cortical Astrocytic Networks In Vivo , 2004, PLoS biology.

[20]  K. Svoboda,et al.  Imaging Calcium Concentration Dynamics in Small Neuronal Compartments , 2004, Science's STKE.

[21]  Daniel E Feldman,et al.  Synaptic basis for developmental plasticity in somatosensory cortex , 2004, Current Opinion in Neurobiology.

[22]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[23]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Lübke,et al.  Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. , 2003, Cerebral cortex.

[25]  M. DeWeese,et al.  Binary Spiking in Auditory Cortex , 2003, The Journal of Neuroscience.

[26]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Takashi R Sato,et al.  Effects of Stimulus-Response Compatibility on Neural Selection in Frontal Eye Field , 2003, Neuron.

[28]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[29]  R. Yuste,et al.  Attractor dynamics of network UP states in the neocortex , 2003, Nature.

[30]  Karel Svoboda,et al.  Circuit Analysis of Experience-Dependent Plasticity in the Developing Rat Barrel Cortex , 2003, Neuron.

[31]  A. Grinvald,et al.  Imaging Spatiotemporal Dynamics of Surround Inhibition in the Barrels Somatosensory Cortex , 2003, The Journal of Neuroscience.

[32]  D. Feldman,et al.  Long-term depression induced by sensory deprivation during cortical map plasticity in vivo , 2003, Nature Neuroscience.

[33]  A. Grinvald,et al.  Spatiotemporal Dynamics of Sensory Responses in Layer 2/3 of Rat Barrel Cortex Measured In Vivo by Voltage-Sensitive Dye Imaging Combined with Whole-Cell Voltage Recordings and Neuron Reconstructions , 2003, The Journal of Neuroscience.

[34]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[35]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[36]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[37]  B Sakmann,et al.  Functionally Independent Columns of Rat Somatosensory Barrel Cortex Revealed with Voltage-Sensitive Dye Imaging , 2001, The Journal of Neuroscience.

[38]  K. Svoboda,et al.  Rapid Development and Plasticity of Layer 2/3 Maps in Rat Barrel Cortex In Vivo , 2001, Neuron.

[39]  Takashi R Sato,et al.  Search Efficiency but Not Response Interference Affects Visual Selection in Frontal Eye Field , 2001, Neuron.

[40]  B. Sakmann,et al.  Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex , 2000, The Journal of physiology.

[41]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[42]  D Thomas,et al.  A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. , 2000, Cell calcium.

[43]  D. Tank,et al.  Action potentials reliably invade axonal arbors of rat neocortical neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  K. Fox,et al.  Plasticity and stability of somatosensory maps in thalamus and cortex , 2000, Current Opinion in Neurobiology.

[45]  D. Feldman,et al.  Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex , 2000, Neuron.

[46]  J. Csicsvari,et al.  Intracellular features predicted by extracellular recordings in the hippocampus in vivo. , 2000, Journal of neurophysiology.

[47]  H. Swadlow,et al.  The influence of single VB thalamocortical impulses on barrel columns of rabbit somatosensory cortex. , 2000, Journal of neurophysiology.

[48]  K. Svoboda,et al.  Estimating intracellular calcium concentrations and buffering without wavelength ratioing. , 2000, Biophysical journal.

[49]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[50]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[51]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[52]  S W Hell,et al.  Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. , 1999, Biophysical journal.

[53]  R. Lund,et al.  Receptive field properties of single neurons in rat primary visual cortex. , 1999, Journal of neurophysiology.

[54]  R. Yuste,et al.  Detecting action potentials in neuronal populations with calcium imaging. , 1999, Methods.

[55]  R D Frostig,et al.  Varying the degree of single-whisker stimulation differentially affects phases of intrinsic signals in rat barrel cortex. , 1999, Journal of neurophysiology.

[56]  Winfried Denk,et al.  Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo , 1999, Nature Neuroscience.

[57]  Charles J. Wilson,et al.  Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo , 1998, Nature.

[58]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[59]  T. Albright,et al.  Efficient Discrimination of Temporal Patterns by Motion-Sensitive Neurons in Primate Visual Cortex , 1998, Neuron.

[60]  A. P. Georgopoulos,et al.  Variability and Correlated Noise in the Discharge of Neurons in Motor and Parietal Areas of the Primate Cortex , 1998, The Journal of Neuroscience.

[61]  M. Steriade Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. , 1997, Cerebral cortex.

[62]  J D Clements,et al.  Detection of spontaneous synaptic events with an optimally scaled template. , 1997, Biophysical journal.

[63]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[64]  K. Fox,et al.  Mechanisms underlying experience-dependent potentiation and depression of vibrissae responses in barrel cortex , 1996, Journal of Physiology-Paris.

[65]  A. Grinvald,et al.  Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18 , 1996, The Journal of Neuroscience.

[66]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[67]  Alcino J. Silva,et al.  Requirement for α-CaMKII in Experience-Dependent Plasticity of the Barrel Cortex , 1996, Science.

[68]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[69]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[70]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[71]  A Grinvald,et al.  Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. , 1995, Journal of neurophysiology.

[72]  M. Armstrong‐James The Nature and Plasticity of Sensory Processing within Adult Rat Barrel Cortex , 1995 .

[73]  F. Rice Comparative Aspects of Barrel Structure and Development , 1995 .

[74]  F. Ebner,et al.  Laminar comparison of somatosensory cortical plasticity. , 1994, Science.

[75]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[76]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[79]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[80]  R. Yuste,et al.  Neuronal domains in developing neocortex. , 1992, Science.

[81]  N. Daw,et al.  The effect of visual experience on development of NMDA receptor synaptic transmission in kitten visual cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[83]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[84]  R. Dykes,et al.  An electrophysiological study of single somatosensory neurons in rat granular cortex serving the limbs: a laminar analysis. , 1988, Journal of neurophysiology.

[85]  M. Armstrong‐James,et al.  Spatiotemporal convergence and divergence in the rat S1 “Barrel” cortex , 1987, The Journal of comparative neurology.

[86]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[87]  D. Simons,et al.  Cytochrome oxidase staining in the rat smI barrel cortex , 1985, The Journal of comparative neurology.

[88]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[89]  Chia‐Sheng Lin,et al.  Receptive field properties of neurons in the visual cortex of the rat , 1981, Neuroscience Letters.

[90]  M. Wong-Riley,et al.  Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[91]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[92]  M. Armstrong‐James The functional status and columnar organization of single cells responding to cutaneous stimulation in neonatal rat somatosensory cortex S1. , 1975, The Journal of physiology.

[93]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[94]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[95]  V. Mountcastle,et al.  THE VARIABILITY OF CENTRAL NEURAL ACTIVITY IN A SENSORY SYSTEM, AND ITS IMPLICATIONS FOR THE CENTRAL REFLECTION OF SENSORY EVENTS. , 1963, Journal of neurophysiology.

[96]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[97]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[98]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[99]  N. Wittenburg,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , 2022 .