Energetics in robotic flight at small scales

Recent advances in design, sensing and control have led to aerial robots that offer great promise in a range of real-world applications. However, one critical open question centres on how to improve the energetic efficiency of aerial robots so that they can be useful in practical situations. This review paper provides a survey on small-scale aerial robots (i.e. less than 1 m2 area foot print, and less than 3 kg weight) from the point of view of energetics. The paper discusses methods to improve the efficiency of aerial vehicles, and reports on recent findings by the authors and other groups on modelling the impact of aerodynamics for the purpose of building energy-aware motion planners and controllers.

[1]  Clyde F. Coombs,et al.  Printed Circuits Handbook , 2007 .

[2]  Robert J. Wood,et al.  The flying monkey: A mesoscale robot that can run, fly, and grasp , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Daniel P. Raymer,et al.  Aircraft Design: A Conceptual Approach , 1989 .

[4]  Vijay Kumar,et al.  Opportunities and challenges with autonomous micro aerial vehicles , 2012, Int. J. Robotics Res..

[5]  Nicholas Roy,et al.  An analysis of wind field estimation and exploitation for quadrotor flight in the urban canopy layer , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Christoph Hürzeler,et al.  A perching mechanism for micro aerial vehicles , 2009 .

[7]  Fabio Morbidi,et al.  Minimum-energy path generation for a quadrotor UAV , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[8]  David Lentink,et al.  Biomimetics: Flying like a fly , 2013, Nature.

[9]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[10]  Vijay Kumar,et al.  Design of small, safe and robust quadrotor swarms , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[11]  Brian M. Sadler,et al.  Trading Safety Versus Performance: Rapid Deployment of Robotic Swarms with Robust Performance Constraints , 2015, ArXiv.

[12]  Metin Sitti,et al.  Platform design and tethered flight of a motor-driven flapping-wing system , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Heinrich H. Bülthoff,et al.  A Novel Overactuated Quadrotor Unmanned Aerial Vehicle: Modeling, Control, and Experimental Validation , 2015, IEEE Transactions on Control Systems Technology.

[14]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[15]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[16]  S. Shankar Sastry,et al.  Flapping flight for biomimetic robotic insects: part I-system modeling , 2006, IEEE Transactions on Robotics.

[17]  Jake J. Abbott,et al.  A Sarrus-Based Passive Mechanism for Rotorcraft Perching , 2016 .

[18]  K. H. Low,et al.  An optimized perching mechanism for autonomous perching with a quadrotor , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Steven Lake Waslander,et al.  Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering , 2009, 2009 IEEE International Conference on Robotics and Automation.

[20]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[21]  Arthur Richards,et al.  Endurance Optimisation of Battery-Powered Rotorcraft , 2015, TAROS.

[22]  Robert Mahony,et al.  Nonlinear Dynamic Modeling for High Performance Control of a Quadrotor , 2012, ICRA 2012.

[23]  Mark R. Cutkosky,et al.  Landing, perching and taking off from vertical surfaces , 2011, Int. J. Robotics Res..

[24]  Robert J. Wood,et al.  Multi-stage micro rockets for robotic insects , 2012, Robotics: Science and Systems.

[25]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[26]  Peter I. Corke,et al.  Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor , 2012, IEEE Robotics & Automation Magazine.

[27]  Dario Floreano,et al.  A bioinspired multi-modal flying and walking robot , 2015, Bioinspiration & biomimetics.

[28]  Steven G. Johnson,et al.  Design and global optimization of high-efficiency thermophotovoltaic systems. , 2010, Optics express.

[29]  Zhou Yan,et al.  Autonomous landing of quadrotor based on ground effect modelling , 2015, 2015 34th Chinese Control Conference (CCC).

[30]  Wolfram Burgard,et al.  Towards Palm-Size Autonomous Helicopters , 2011, J. Intell. Robotic Syst..

[31]  Johnhenri R. Richardson,et al.  Autonomous battery swapping system for small-scale helicopters , 2010, 2010 IEEE International Conference on Robotics and Automation.

[32]  Sergei Lupashin,et al.  The Flight Assembled Architecture installation: Cooperative construction with flying machines , 2014, IEEE Control Systems.

[33]  Ronald S. Fearing,et al.  Experimental dynamics of wing assisted running for a bipedal ornithopter , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Kevin Vicencio,et al.  Energy-optimal path planning for six-rotors on multi-target missions , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[35]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[36]  Yash Mulgaonkar,et al.  Autonomous charging to enable long-endurance missions for small aerial robots , 2014, Defense + Security Symposium.

[37]  Ronald S. Fearing,et al.  Flight control for target seeking by 13 gram ornithopter , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Simon Newman,et al.  Basic Helicopter Aerodynamics , 1990 .

[39]  Robert J. Wood,et al.  Fly on the wall , 2014, 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics.

[40]  David R. Williams,et al.  Reduced-order unsteady aerodynamic models at low Reynolds numbers , 2013, Journal of Fluid Mechanics.

[41]  Peter I. Corke,et al.  Robotics, Vision and Control - Fundamental Algorithms in MATLAB® , 2011, Springer Tracts in Advanced Robotics.

[42]  Mark Yim,et al.  Flight performance of a swashplateless micro air vehicle , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[43]  Jonathan P. How,et al.  An Automated Battery Management System to Enable Persistent Missions With Multiple Aerial Vehicles , 2015, IEEE/ASME Transactions on Mechatronics.

[44]  Michel Loève,et al.  Probability Theory I , 1977 .

[45]  Kevin Y. Ma,et al.  Controlled Flight of a Biologically Inspired, Insect-Scale Robot , 2013, Science.

[46]  B. Remes,et al.  Design, Aerodynamics, and Vision-Based Control of the DelFly , 2009 .

[47]  John Cutler Understanding Aircraft Structures , 1981 .

[48]  Mark R. Cutkosky,et al.  Thrust-Assisted Perching and Climbing for a Bioinspired UAV , 2016, Living Machines.

[49]  David Lentink,et al.  Fruit fly scale robots can hover longer with flapping wings than with spinning wings , 2016, Journal of The Royal Society Interface.

[50]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[51]  Donald Ruffatto,et al.  Autonomous perching and take-off on vertical walls for a quadrotor micro air vehicle , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[52]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[53]  Richard M. Murray,et al.  A real-time helicopter testbed for insect-inspired visual flight control , 2009, 2009 IEEE International Conference on Robotics and Automation.

[54]  Luca Petricca,et al.  Micro- and Nano-Air Vehicles: State of the Art , 2011 .

[55]  Chris Mack,et al.  The Multiple Lives of Moore's Law , 2015, IEEE Spectrum.

[56]  Herbert G. Tanner,et al.  Constrained decision-making for low-count radiation detection by mobile sensors , 2015, Auton. Robots.

[57]  George Vachtsevanos,et al.  Towards energy efficiency in micro hovering air vehicles , 2011, 2011 Aerospace Conference.

[58]  Jordin T. Kare,et al.  Laser power beaming for defense and security applications , 2011, Defense + Commercial Sensing.

[59]  Mark Yim,et al.  Passive stability of a single actuator micro aerial vehicle , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[60]  Antonios Tsourdos,et al.  Energy Management in Swarm of Unmanned Aerial Vehicles , 2013, 2013 International Conference on Unmanned Aircraft Systems (ICUAS).

[61]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[62]  M. Soljačić,et al.  Wireless Power Transfer via Strongly Coupled Magnetic Resonances , 2007, Science.

[63]  Christos G. Cassandras,et al.  An Optimal Control Approach to the Multi-Agent Persistent Monitoring Problem , 2012, IEEE Transactions on Automatic Control.

[64]  M. A. Minor,et al.  An Avian-Inspired Passive Mechanism for Quadrotor Perching , 2013, IEEE/ASME Transactions on Mechatronics.

[65]  Mary Frecker,et al.  Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters , 2013 .

[66]  Vijay Kumar,et al.  QuadCloud: A Rapid Response Force with Quadrotor Teams , 2014, ISER.

[67]  R. Wood,et al.  Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion , 2016, Science.

[68]  Mac Schwager,et al.  Planning periodic persistent monitoring trajectories for sensing robots in Gaussian Random Fields , 2013, 2013 IEEE International Conference on Robotics and Automation.

[69]  Ronald S. Fearing,et al.  Cooperative control and modeling for narrow passage traversal with an ornithopter MAV and lightweight ground station , 2013, AAMAS.

[70]  Giorgio C. Buttazzo,et al.  Energy-Aware Coverage Path Planning of UAVs , 2015, 2015 IEEE International Conference on Autonomous Robot Systems and Competitions.

[71]  Konstantinos Karydis,et al.  Probabilistically valid stochastic extensions of deterministic models for systems with uncertainty , 2015, Int. J. Robotics Res..

[72]  Yi Cui,et al.  Designing high-energy lithium-sulfur batteries. , 2016, Chemical Society reviews.

[73]  Robert J. Wood,et al.  Science, technology and the future of small autonomous drones , 2015, Nature.

[74]  Ronald S. Fearing,et al.  Coordinated launching of an ornithopter with a hexapedal robot , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[75]  Taeyoung Lee,et al.  Geometric controls for a tethered quadrotor UAV , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[76]  Aaron M. Harrington,et al.  Power and weight considerations in small, agile quadrotors , 2014, Defense + Security Symposium.

[77]  Soon-Jo Chung,et al.  Bat Bot (B2), a biologically inspired flying machine , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[78]  Paul E. I. Pounds,et al.  The Triangular Quadrotor: A More Efficient Quadrotor Configuration , 2015, IEEE Transactions on Robotics.

[79]  Lars Grne,et al.  Nonlinear Model Predictive Control: Theory and Algorithms , 2011 .

[80]  M. Soljačić,et al.  Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics , 2013, Proceedings of the National Academy of Sciences.

[81]  Dario Floreano,et al.  A perching mechanism for flying robots using a fibre-based adhesive , 2013, 2013 IEEE International Conference on Robotics and Automation.

[82]  Giuseppe Loianno,et al.  Aggressive Flight With Quadrotors for Perching on Inclined Surfaces , 2016 .

[83]  I. Faruque,et al.  Dipteran insect flight dynamics. Part 2: Lateral-directional motion about hover. , 2010, Journal of theoretical biology.

[84]  Reg Austin,et al.  Unmanned Aircraft Systems: Uavs Design, Development and Deployment , 2010 .

[85]  Vijay Kumar,et al.  Influence of Aerodynamics and Proximity Effects in Quadrotor Flight , 2012, ISER.

[86]  I. Sharf,et al.  Ground effect experiments and model validation with Draganflyer X8 rotorcraft , 2014, 2014 International Conference on Unmanned Aircraft Systems (ICUAS).

[87]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[88]  David Lentink,et al.  The Scalable Design of Flapping Micro-Air Vehicles Inspired by Insect Flight , 2010, Flying Insects and Robots.

[89]  Vijay Kumar,et al.  Toward autonomous avian-inspired grasping for micro aerial vehicles , 2014, Bioinspiration & biomimetics.

[90]  Matthew Spenko,et al.  Modeling and Performance Assessment of the HyTAQ, a Hybrid Terrestrial/Aerial Quadrotor , 2014, IEEE Transactions on Robotics.

[91]  Simon Newman,et al.  Basic Helicopter Aerodynamics: Seddon/Basic Helicopter Aerodynamics , 2011 .

[92]  Hideyuki Tsukagoshi,et al.  Aerial manipulator with perching and door-opening capability , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).