Structured Motion Planning in the Local Configuration Space

Proposition d'un algorithme pour la planification de mouvement en temps minimal d'un manipulateur dans un espace de configuration. L'unicite de cet algorithme resulte de la combinaison des splines polynomiales cubiques et quadratiques. Cette methode considere toutes les limitations physiques realistes inherentes a la conception du manipulateur, et aux contraintes geometriques imposees sur le chemin

[1]  Motoji Yamamoto,et al.  Planning of manipulator joint trajectories by an iterative method , 1988, Robotica.

[2]  Alan S. Morris,et al.  Real-Time Robot Motion: The VLSI Implementation Via Transputers , 1989 .

[3]  Chun-Shin Lin,et al.  Approximate optimum paths of robot manipulators under realistic physical constraints , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[4]  Alan S. Morris,et al.  A Distributed Pipelined Architecture of the Recursive Lagrangian Equations of Motion for Robot Manipulators with VLSI Implementation , 1989 .

[5]  C. S. G. Lee,et al.  Robotics: Control, Sensing, Vision, and Intelligence , 1987 .

[6]  R. Paul Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .

[7]  Richard Paul Collins Paul,et al.  Modelling, trajectory calculation and servoing of a computer controlled arm , 1972 .

[8]  Richard Paul,et al.  Manipulator Cartesian Path Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Russell H. Taylor,et al.  Planning and execution of straight line manipulator trajectories , 1979 .

[10]  John M. Hollerbach,et al.  Planning of Minimum- Time Trajectories for Robot Arms , 1986 .

[11]  Kang G. Shin,et al.  Minimum-time path planning for robot arms and their dynamics , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  David E. Orin Pipelined approach to inverse plant plus jacobian control of robot manipulators , 1984, ICRA.

[13]  William H. McCumbRer,et al.  The Analysis and Comparison of Actual to Predicted Collector Array Performance , 1979, IBM J. Res. Dev..

[14]  Harry W. Mergler Industrial robots: Computer interfacing and control , 1986, Proceedings of the IEEE.

[15]  Kang Shin,et al.  Minimum-time trajectory planning for industrial robots with general torque constraints , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[16]  C. Lin,et al.  Optimum Path Planning for Mechanical Manipulators , 1981 .

[17]  Alan S. Morris,et al.  An On-Line Distributed Minimum-Time Trajectory Generator for Intelligent Robot Manipulators , 1988 .

[18]  C. Lin,et al.  Formulation and optimization of cubic polynomial joint trajectories for industrial robots , 1983 .

[19]  Richard P. Paul,et al.  An On-Line Dynamic Trajectory Generator , 1984 .

[20]  John M. Hollerbach,et al.  A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[21]  Hong Jeon,et al.  A minimum time joint-trajectory planning for industrial manipulator with input torque constraint , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[22]  F. B. Hildebrand,et al.  Introduction To Numerical Analysis , 1957 .

[23]  Kimon P. Valavanis,et al.  Efficient dynamics for a PUMA-600 , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[24]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[25]  C.s.g. Lee,et al.  Geometric Approach in Solving Inverse Kinematics of PUMA Robots , 1984, IEEE Transactions on Aerospace and Electronic Systems.

[26]  Hong Jeon,et al.  On minimum time joint-trajectory planning for industrial manipulator with cubic polynomials and input torque constraint , 1986, 1986 25th IEEE Conference on Decision and Control.

[27]  A. Bazerghi,et al.  An exact kinematic model of PUMA 600 manipulator , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[28]  J. Hollerbach Dynamic Scaling of Manipulator Trajectories , 1983, 1983 American Control Conference.

[29]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[30]  Rajnikant V. Patel,et al.  Formulation of Joint Trajectories for Industrial Robots Using B-Splines , 1987, IEEE Transactions on Industrial Electronics.

[31]  R. Paul,et al.  Kinematic control equations for simple manipulators , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[32]  K. Doty,et al.  On-Line Polynomial Trajectories for Robot Manipulators , 1985 .

[33]  Oussama Khatib,et al.  The explicit dynamic model and inertial parameters of the PUMA 560 arm , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[34]  A. Mohri,et al.  Optimal and near-optimal manipulators joint trajectories with a preplanned path , 1987, 26th IEEE Conference on Decision and Control.

[35]  J. Y. S. Luh,et al.  Approximate joint trajectories for control of industrial robots along Cartesian paths , 1984, IEEE Transactions on Systems, Man, and Cybernetics.