Dopamine, Affordance and Active Inference

The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level.

[1]  J. Giménez-Amaya,et al.  Anatomical re-evaluation of the corticostriatal projections to the caudate nucleus: a retrograde labeling study in the cat , 1999, Neuroscience Research.

[2]  Paul Cisek,et al.  Cortical mechanisms of action selection: the affordance competition hypothesis , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  Karl J. Friston,et al.  Cortical circuits for perceptual inference , 2009, Neural Networks.

[4]  Robert Miller,et al.  Tardive Dyskinesia in the Era of Typical and Atypical Antipsychotics. Part 1: Pathophysiology and Mechanisms of Induction , 2005, Canadian journal of psychiatry. Revue canadienne de psychiatrie.

[5]  F. Gregory Ashby,et al.  A model of dopamine modulated cortical activation , 2003, Neural Networks.

[6]  Mark A. Gluck,et al.  A Neurocomputational Model of Dopamine and Prefrontal–Striatal Interactions during Multicue Category Learning by Parkinson Patients , 2011, Journal of Cognitive Neuroscience.

[7]  Thomas E. Hazy,et al.  Banishing the homunculus: Making working memory work , 2006, Neuroscience.

[8]  H. Deubel,et al.  Saccade target selection and object recognition: Evidence for a common attentional mechanism , 1996, Vision Research.

[9]  W. Schultz Multiple dopamine functions at different time courses. , 2007, Annual review of neuroscience.

[10]  Karl J. Friston,et al.  A Hierarchy of Time-Scales and the Brain , 2008, PLoS Comput. Biol..

[11]  Thomas V. Wiecki,et al.  Neurocomputational models of motor and cognitive deficits in Parkinson's disease. , 2010, Progress in brain research.

[12]  John D. Hey,et al.  AN EXPERIMENTAL ANALYSIS , 2004 .

[13]  Karl J. Friston,et al.  A Bayesian Foundation for Individual Learning Under Uncertainty , 2011, Front. Hum. Neurosci..

[14]  K. J. Campbell,et al.  Bilateral tectal projection of single nigrostriatal dopamine cells in the rat , 1989, Neuroscience.

[15]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[16]  H. Poizner,et al.  Probabilistic reversal learning is impaired in Parkinson's disease , 2009, Neuroscience.

[17]  Michael J. Frank,et al.  Understanding decision-making deficits in neurological conditions: insights from models of natural action selection , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  T. Robbins,et al.  Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. , 2001, Cerebral cortex.

[19]  Marc Toussaint,et al.  Optimization of sequential attractor-based movement for compact behaviour generation , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[20]  Samuel M. McClure,et al.  A computational substrate for incentive salience , 2003, Trends in Neurosciences.

[21]  Peter Dayan,et al.  Dopamine: generalization and bonuses , 2002, Neural Networks.

[22]  E. Rolls,et al.  Computational models of schizophrenia and dopamine modulation in the prefrontal cortex , 2008, Nature Reviews Neuroscience.

[23]  James R Müller,et al.  Microstimulation of the superior colliculus focuses attention without moving the eyes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  B. van Swinderen,et al.  Dopamine in Drosophila: setting arousal thresholds in a miniature brain , 2011, Proceedings of the Royal Society B: Biological Sciences.

[25]  Patricia S. Goldman-Rakic,et al.  Quantitative Three-Dimensional Analysis of the Catecholaminergic Innervation of Identified Neurons in the Macaque Prefrontal Cortex , 1997, The Journal of Neuroscience.

[26]  Erwan Bezard,et al.  Pathophysiology of levodopa-induced dyskinesia: Potential for new therapies , 2001, Nature Reviews Neuroscience.

[27]  M. Frank,et al.  From reinforcement learning models to psychiatric and neurological disorders , 2011, Nature Neuroscience.

[28]  Karl J. Friston,et al.  Free Energy, Value, and Attractors , 2011, Comput. Math. Methods Medicine.

[29]  R. Shaw,et al.  Perceiving, Acting and Knowing : Toward an Ecological Psychology , 1978 .

[30]  Karl J. Friston,et al.  Attention, Uncertainty, and Free-Energy , 2010, Front. Hum. Neurosci..

[31]  Michael J. Frank,et al.  A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism , 2008, Neuropsychologia.

[32]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[33]  Michael G. Garelick,et al.  Activation of Dopamine Neurons is Critical for Aversive Conditioning and Prevention of Generalized Anxiety , 2011, Nature Neuroscience.

[34]  J. Kalaska,et al.  Neural mechanisms for interacting with a world full of action choices. , 2010, Annual review of neuroscience.

[35]  H. Heuer,et al.  Perspectives on Perception and Action , 1989 .

[36]  三嶋 博之 The theory of affordances , 2008 .

[37]  Daeyeol Lee,et al.  Ubiquity and Specificity of Reinforcement Signals throughout the Human Brain , 2011, Neuron.

[38]  Joshua L. Plotkin,et al.  Synaptically driven state transitions in distal dendrites of striatal spiny neurons , 2011, Nature Neuroscience.

[39]  R. Huerta,et al.  Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model. , 2008, Chaos.

[40]  P. Anselme,et al.  The uncertainty processing theory of motivation , 2010, Behavioural Brain Research.

[41]  S. H. Ahmed,et al.  Computational Approaches to the Neurobiology of Drug Addiction , 2009, Pharmacopsychiatry.

[42]  Karl J. Friston,et al.  Frontiers in Neuroinformatics , 2022 .

[43]  Raju S. Bapi,et al.  Role of CAMKII in reinforcement learning: a computational model of glutamate and dopamine signaling pathways , 2011, Biological Cybernetics.

[44]  K. Cheng Theory of Superconductivity , 1948, Nature.

[45]  A. Redish,et al.  Addiction as a Computational Process Gone Awry , 2004, Science.

[46]  P. Goldman-Rakic,et al.  Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390 , 1991, Neuroscience.

[47]  W. Schultz,et al.  Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons , 2003, Science.

[48]  A. Yuille,et al.  Opinion TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Vision as Bayesian inference: analysis by synthesis? , 2022 .

[49]  P S Goldman-Rakic,et al.  D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[50]  C. Marsden,et al.  Fronto-striatal cognitive deficits at different stages of Parkinson's disease. , 1992, Brain : a journal of neurology.

[51]  U. D'Souza Gene and Promoter Structures of the Dopamine Receptors , 2010 .

[52]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[53]  Karl J. Friston Hierarchical Models in the Brain , 2008, PLoS Comput. Biol..

[54]  C. Marsden,et al.  'Frontal' cognitive function in patients with Parkinson's disease 'on' and 'off' levodopa. , 1988, Brain : a journal of neurology.

[55]  J. Fuster The Prefrontal Cortex—An Update Time Is of the Essence , 2001, Neuron.

[56]  T. Braver,et al.  A theory of cognitive control, aging cognition, and neuromodulation , 2002, Neuroscience & Biobehavioral Reviews.

[57]  Thomas E. Hazy,et al.  Neural mechanisms of acquired phasic dopamine responses in learning , 2010, Neuroscience & Biobehavioral Reviews.

[58]  R Bellman,et al.  On the Theory of Dynamic Programming. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Ethan S. Bromberg-Martin,et al.  Midbrain Dopamine Neurons Signal Preference for Advance Information about Upcoming Rewards , 2009, Neuron.

[60]  A. Allport,et al.  Selection for action: Some behavioral and neurophysiological considerations of attention and action , 1987 .

[61]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[62]  Gustavo Deco,et al.  Synaptic dynamics and decision making , 2010, Proceedings of the National Academy of Sciences.

[63]  Gilles Laurent,et al.  Transient Dynamics for Neural Processing , 2008, Science.

[64]  Karl J. Friston,et al.  Generalised Filtering , 2010 .

[65]  P. Goldman-Rakic,et al.  The anatomy of dopamine in monkey and human prefrontal cortex. , 1992, Journal of neural transmission. Supplementum.

[66]  E. Koechlin,et al.  The Architecture of Cognitive Control in the Human Prefrontal Cortex , 2003, Science.

[67]  K. J. Campbell,et al.  Co-localization of tyrosine hydroxylase and glutamate decar☐ylase in a subpopulation of single nigrotectal projection neurons , 1991, Brain Research.

[68]  W. Yao,et al.  Dopaminergic signaling in dendritic spines. , 2008, Biochemical pharmacology.

[69]  David Badre,et al.  Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes , 2008, Trends in Cognitive Sciences.

[70]  C. D. Stern,et al.  Handbook of Chemical Neuroanatomy Methods in Chemical Neuroanatomy. Edited by A. Bjorklund and T. Hokfelt. Elsevier, Amsterdam, 1983. Cloth bound, 548 pp. UK £140. (Volume 1 in the series). , 1986, Neurochemistry International.

[71]  S. R. Nash,et al.  Dopamine receptors: from structure to function. , 1998, Physiological reviews.

[72]  Christian Bick,et al.  Dynamical origin of the effective storage capacity in the brain's working memory. , 2009, Physical review letters.

[73]  Karl J. Friston The free-energy principle: a rough guide to the brain? , 2009, Trends in Cognitive Sciences.

[74]  M. Lidow,et al.  D1- and D2 dopaminergic receptors in the developing cerebral cortex of macaque monkey: A film autoradiographic study , 1995, Neuroscience.

[75]  Karl J. Friston,et al.  Action understanding and active inference , 2011, Biological Cybernetics.

[76]  T. Hattori,et al.  Dopaminergic nigrotectal projection in the rat , 1988, Brain Research.

[77]  Satoru Kondo,et al.  Neocortical Inhibitory Terminals Innervate Dendritic Spines Targeted by Thalamocortical Afferents , 2007, The Journal of Neuroscience.

[78]  Hermann Haken,et al.  Synergetics: An Introduction , 1983 .

[79]  Naftali Tishby,et al.  Dopaminergic Balance between Reward Maximization and Policy Complexity , 2011, Front. Syst. Neurosci..

[80]  Alan Kingstone,et al.  Time to act and attend to the real mechanisms of action and attention. , 2010, British journal of psychology.

[81]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[82]  Peter Dayan,et al.  Vigor in the Face of Fluctuating Rates of Reward: An Experimental Examination , 2011, Journal of Cognitive Neuroscience.

[83]  Markus Diesmann,et al.  A Spiking Neural Network Model of an Actor-Critic Learning Agent , 2009, Neural Computation.

[84]  A. Graybiel,et al.  Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments , 2011, Front. Neuroanat..

[85]  Eytan Ruppin,et al.  Actor-critic models of the basal ganglia: new anatomical and computational perspectives , 2002, Neural Networks.

[86]  H. Deubel,et al.  Attentional landscapes in reaching and grasping , 2010, Vision Research.

[87]  E. Bird,et al.  Chemical pathology of Huntington's disease. , 1980, Annual review of pharmacology and toxicology.

[88]  Scott T. Grafton,et al.  Evidence for a distributed hierarchy of action representation in the brain. , 2007, Human movement science.

[89]  M. Goldberg,et al.  Visuospatial and motor attention in the monkey , 1987, Neuropsychologia.

[90]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[91]  Peter Redgrave,et al.  A computational model of action selection in the basal ganglia. I. A new functional anatomy , 2001, Biological Cybernetics.

[92]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[93]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[94]  T. Robbins,et al.  l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease , 2003, Neuropsychologia.

[95]  R. Ivry,et al.  The coordination of movement: optimal feedback control and beyond , 2010, Trends in Cognitive Sciences.

[96]  Michael J. Frank,et al.  Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism , 2005, Journal of Cognitive Neuroscience.

[97]  D. Hoffman,et al.  Sensorimotor transformations in cortical motor areas , 2003, Neuroscience Research.

[98]  Jun Zhang,et al.  A Neural Computational Model of Incentive Salience , 2009, PLoS Comput. Biol..

[99]  K. Doya Modulators of decision making , 2008, Nature Neuroscience.

[100]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[101]  K. Berridge The debate over dopamine’s role in reward: the case for incentive salience , 2007, Psychopharmacology.

[102]  I. D. Hentall A theoretical analysis of extracellular punctate stimulation around dendrites , 1989, Neuroscience.

[103]  Karl J. Friston,et al.  The mismatch negativity: A review of underlying mechanisms , 2009, Clinical Neurophysiology.

[104]  M. Hampson,et al.  Neurobiological substrates of Tourette's disorder. , 2010, Journal of child and adolescent psychopharmacology.

[105]  Tutut Herawan,et al.  Computational and mathematical methods in medicine. , 2006, Computational and mathematical methods in medicine.

[106]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[107]  Karl J. Friston,et al.  Action and behavior: a free-energy formulation , 2010, Biological Cybernetics.

[108]  M. Gluck,et al.  Dopaminergic Drugs Modulate Learning Rates and Perseveration in Parkinson's Patients in a Dynamic Foraging Task , 2009, The Journal of Neuroscience.

[109]  Wei Wu,et al.  Coordinate system representations of movement direction in the premotor cortex , 2007, Experimental Brain Research.

[110]  P. Goldman-Rakic,et al.  Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response , 1982, Brain Research.

[111]  Jonathan D. Cohen,et al.  Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function , 1999, Biological Psychiatry.

[112]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[113]  J. Bolam,et al.  Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[114]  M. Petrides,et al.  Neural Bases of Set-Shifting Deficits in Parkinson's Disease , 2004, The Journal of Neuroscience.

[115]  A. Lees,et al.  Cognitive deficits in the early stages of Parkinson's disease. , 1983, Brain : a journal of neurology.

[116]  J. Deniau,et al.  Disinhibition as a basic process in the expression of striatal functions , 1990, Trends in Neurosciences.

[117]  C. Marsden,et al.  Internal versus external cues and the control of attention in Parkinson's disease. , 1988, Brain : a journal of neurology.

[118]  W. Penny,et al.  Time Scales of Representation in the Human Brain: Weighing Past Information to Predict Future Events , 2011, Front. Hum. Neurosci..

[119]  P. Goldman-Rakic,et al.  Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[120]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[121]  Colin Camerer,et al.  Explicit neural signals reflecting reward uncertainty , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[122]  David Mumford,et al.  On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[123]  B. Roche,et al.  The Behavior of Organisms? , 1997 .

[124]  Jonathan D. Cohen,et al.  Computational roles for dopamine in behavioural control , 2004, Nature.

[125]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[126]  B. Berger,et al.  Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates , 1991, Trends in Neurosciences.

[127]  Mark D. Humphries,et al.  Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit , 2009, Neural Networks.

[128]  F. Benes,et al.  High‐resolution Scatchard analysis shows D1 receptor binding on pyramidal and nonpyramidal neurons , 1998, Synapse.

[129]  Karl J. Friston,et al.  Reinforcement Learning or Active Inference? , 2009, PloS one.

[130]  Karl J. Friston,et al.  A free energy principle for the brain , 2006, Journal of Physiology-Paris.

[131]  P. Dayan Dopamine, reinforcement learning, and addiction. , 2009, Pharmacopsychiatry.

[132]  Karl J. Friston,et al.  Influence of Uncertainty and Surprise on Human Corticospinal Excitability during Preparation for Action , 2008, Current Biology.

[133]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[134]  P. Dayan,et al.  Model-based influences on humans’ choices and striatal prediction errors , 2011, Neuron.

[135]  A. Sampson,et al.  Dopamine transporter immunoreactivity in monkey cerebral cortex: Regional, laminar, and ultrastructural localization , 2001, The Journal of comparative neurology.

[136]  R. Gregory Perceptions as hypotheses. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[137]  久保 亮五,et al.  H. Haken: Synergetics; An Introduction Non-equilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology, Springer-Verlag, Berlin and Heidelberg, 1977, viii+325ページ, 251×17.5cm, 11,520円. , 1978 .

[138]  M. Nitsche,et al.  Dopaminergic Impact on Cortical Excitability in Humans , 2010, Reviews in the neurosciences.

[139]  Timothy E. J. Behrens,et al.  Choice, uncertainty and value in prefrontal and cingulate cortex , 2008, Nature Neuroscience.

[140]  S. Kapur Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. , 2003, The American journal of psychiatry.

[141]  N. Bohnen,et al.  Effect of dopaminergic medications on the time course of explicit motor sequence learning in Parkinson's disease. , 2010, Journal of neurophysiology.

[142]  Karl J. Friston,et al.  Predictive coding under the free-energy principle , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[143]  Kenji Doya,et al.  Metalearning and neuromodulation , 2002, Neural Networks.

[144]  K. Berridge,et al.  What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? , 1998, Brain Research Reviews.

[145]  Martin Eimer,et al.  Manual response preparation disrupts spatial attention: An electrophysiological investigation of links between action and attention , 2010, Neuropsychologia.

[146]  D. Weinberger,et al.  Genes, dopamine and cortical signal-to-noise ratio in schizophrenia , 2004, Trends in Neurosciences.