Neural encoding of binocular disparity: Energy models, position shifts and phase shifts

[1]  H. Smallman Fine-to-coarse scale disambiguation in stereopsis , 1995, Vision Research.

[2]  Heinrich H. Bülthoff,et al.  Human stereovision without localized image features , 1995, Biological Cybernetics.

[3]  R D Freeman,et al.  Neuronal Mechanisms Underlying Stereopsis: How Do Simple Cells in the Visual Cortex Encode Binocular Disparity? , 1995, Perception.

[4]  F. Kingdom,et al.  Contrast thresholds for stereoscopic depth identification with isoluminant and isochromatic stimuli , 1994, Vision Research.

[5]  David J. Fleet Disparity from local weighted phase-correlation , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[6]  H. Smallman,et al.  Size-disparity correlation in stereopsis at contrast threshold. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[8]  Ning Qian,et al.  Computing Stereo Disparity and Motion with Known Binocular Cell Properties , 1994, Neural Computation.

[9]  Izumi Ohzawa,et al.  Monocular and binocular mechanisms of contrast gain control , 1994, Other Conferences.

[10]  P. Hammond,et al.  Cat striate cortex: monocular and interocular comparisons of spatial-frequency selectivity. , 1994, Anais da Academia Brasileira de Ciencias.

[11]  David J. Fleet,et al.  Stability of Phase Information , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[13]  Hermann Wagner,et al.  Disparity-sensitive cells in the owl have a characteristic disparity , 1993, Nature.

[14]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[15]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[16]  D. Pollen,et al.  Interneuronal interaction between members of quadrature phase and anti-phase pairs in the cat's visual cortex , 1992, Vision Research.

[17]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[18]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[19]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[20]  H. Wilson,et al.  Neural models of stereoscopic vision , 1991, Trends in Neurosciences.

[21]  Gregory C. DeAngelis,et al.  Depth is encoded in the visual cortex by a specialized receptive field structure , 1991, Nature.

[22]  David J. Fleet,et al.  Phase-based disparity measurement , 1991, CVGIP Image Underst..

[23]  Michael S. Landy,et al.  Nonlinear Model of Neural Responses in Cat Visual Cortex , 1991 .

[24]  P. Lennie,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[25]  I. Ohzawa,et al.  On the neurophysiological organization of binocular vision , 1990, Vision Research.

[26]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[27]  D. G. Albrecht,et al.  Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function , 1989, Vision Research.

[28]  G. ALsnEcHr,et al.  VISUAL CORTICAL RECEPTIVE FIELDS IN MONKEY AND CAT: SPATIAL AND TEMPORAL PHASE TRANSFER FUNCTION , 1989 .

[29]  S. McKee,et al.  The role of retinal correspondence in stereoscopic matching , 1988, Vision Research.

[30]  S. Levay,et al.  Ocular dominance and disparity coding in cat visual cortex , 1988, Visual Neuroscience.

[31]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[32]  H. Wagner,et al.  Representation of interaural time difference in the central nucleus of the barn owl's inferior colliculus , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  D. Field,et al.  The structure and symmetry of simple-cell receptive-field profiles in the cat’s visual cortex , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  I. Ohzawa,et al.  The binocular organization of complex cells in the cat's visual cortex. , 1986, Journal of neurophysiology.

[35]  I. Ohzawa,et al.  The binocular organization of simple cells in the cat's visual cortex. , 1986, Journal of neurophysiology.

[36]  P Heggelund,et al.  Quantitative studies of the discharge fields of single cells in cat striate cortex. , 1986, The Journal of physiology.

[37]  B. C. Motter,et al.  Responses of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic random-dot stereograms , 1985, Vision Research.

[38]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[39]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[40]  C. Schor,et al.  Binocular sensory fusion is limited by spatial resolution , 1984, Vision Research.

[41]  P. O. Bishop,et al.  Binocular simple cells for local stereopsis: Comparison of receptive field organizations for the two eyes , 1984, Vision Research.

[42]  Gerald M. Edelman,et al.  Dynamic aspects of neocortical function , 1984 .

[43]  T. Poggio,et al.  The analysis of stereopsis. , 1984, Annual review of neuroscience.

[44]  Daniel A. Pollen,et al.  Visual cortical neurons as localized spatial frequency filters , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[45]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[46]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[47]  L. Palmer,et al.  Receptive-field structure in cat striate cortex. , 1981, Journal of neurophysiology.

[48]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[49]  J. Mayhew,et al.  Vergence Eye Movements Made in Response to Spatial-Frequency-Filtered Random-Dot Stereograms , 1981, Perception.

[50]  G. Poggio,et al.  Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey , 1981, The Journal of physiology.

[51]  D. Ferster A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex , 1981, The Journal of physiology.

[52]  H. Broman,et al.  The instantaneous frequency of a Gaussian signal: The one-dimensional density function , 1981 .

[53]  J. Pettigrew Binocular visual processing in the owl’s telencephalon , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[54]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[55]  D Marr,et al.  A computational theory of human stereo vision. , 1979, Proceedings of the Royal Society of London. Series B, Biological sciences.

[56]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[57]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[58]  M. Konishi,et al.  Space and frequency are represented separately in auditory midbrain of the owl. , 1978, Journal of neurophysiology.

[59]  E I Knudsen,et al.  A neural map of auditory space in the owl. , 1978, Science.

[60]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[61]  J. Mayhew,et al.  Rivalrous texture stereograms , 1976, Nature.

[62]  J. Pettigrew,et al.  Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). , 1976, Science.

[63]  D. Whitteridge,et al.  Binocular visual mechanisms in cortical areas I and II of the sheep. , 1976, The Journal of physiology.

[64]  B. Julesz,et al.  Independent Spatial-Frequency-Tuned Channels in Binocular Fusion and Rivalry , 1975 .

[65]  Colin R. Palmer,et al.  Structure and Symmetry , 1974 .

[66]  M J Steinbach,et al.  Eye movements of the owl. , 1973, Vision research.

[67]  J. Pettigrew,et al.  The neurophysiology of binocular vision. , 1972, Scientific American.

[68]  J. Pokorny Foundations of Cyclopean Perception , 1972 .

[69]  D. Hubel,et al.  Stereoscopic Vision in Macaque Monkey: Cells sensitive to Binocular Depth in Area 18 of the Macaque Monkey Cortex , 1970, Nature.

[70]  G. F. Cooper,et al.  The spatial selectivity of the visual cells of the cat , 1969, The Journal of physiology.

[71]  G. F. Cooper,et al.  The angular selectivity of visual cortical cells to moving gratings , 1968, The Journal of physiology.

[72]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[73]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[74]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .