Persuasion and dynamic communication

A speaker attempts to persuade a listener to accept a request by presenting evidence. A persuasion rule specifies what evidence is persuasive. This paper compares static and dynamic rules. We present a single linear program (i) whose solution corresponds to the listener's optimal dynamic rule and (ii) whose solution with additional integer constraints corresponds to the optimal static rule. We present a condition--foresight--under which the optimal persuasion problem reduces to the classical maximum flow problem. This has various qualitative consequences, including the coincidence of optimal dynamic and static persuasion rules, elimination of the need for randomization, and symmetry of optimal static rules.

[1]  Ariel Rubinstein,et al.  A study in the pragmatics of persuasion: a game theoretical approach , 2006 .

[2]  J. Picard Maximal Closure of a Graph and Applications to Combinatorial Problems , 1976 .

[3]  S. Hart,et al.  Long Cheap Talk , 2003 .

[4]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[5]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[6]  Paul R. Milgrom,et al.  Good News and Bad News: Representation Theorems and Applications , 1981 .

[7]  H. Shin News Management and the Value of Firms , 1994 .

[8]  Jerry R. Green,et al.  Partially Verifiable Information and Mechanism Design , 1986 .

[9]  H. Shin The Burden of Proof in a Game of Persuasion , 1994 .

[10]  Brigitte Maier,et al.  Supermodularity And Complementarity , 2016 .

[11]  Ying Chen,et al.  Effective Persuasion , 2014 .

[12]  Itai Sher,et al.  Credibility and determinism in a game of persuasion , 2011, Games Econ. Behav..

[13]  Sergei Severinov,et al.  Mechanism design with partial state verifiability , 2008, Games Econ. Behav..

[14]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[15]  F. Forges,et al.  Communication equilibria with partially verifiable types , 2005 .

[16]  Joel Watson,et al.  Evidence disclosure and verifiability , 2004, J. Econ. Theory.

[17]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[18]  J. Sobel,et al.  STRATEGIC INFORMATION TRANSMISSION , 1982 .

[19]  K. Hagerty,et al.  The Optimal Amount of Discretion to Allow in Disclosure , 1990 .

[20]  Vincent Conitzer,et al.  New complexity results about Nash equilibria , 2008, Games Econ. Behav..

[21]  Wioletta Dziuda,et al.  Strategic argumentation , 2011, J. Econ. Theory.

[22]  H. Shin Disclosures and Asset Returns , 2001 .

[23]  Paul R. Milgrom,et al.  Relying on the Information of Interested Parties , 1985 .

[24]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[25]  Barton L. Lipman,et al.  Current Draft , 1994 .

[26]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[27]  Nirvikar Singh,et al.  Implementation with partial verification , 2001 .

[28]  Gregory Pavlov,et al.  Mediation, arbitration and negotiation , 2009, J. Econ. Theory.

[29]  I. Sher Persuasion and Limited Communication , 2008 .

[30]  Ariel Rubinstein,et al.  Debates and Decisions: On a Rationale of Argumentation Rules , 2001, Games Econ. Behav..

[31]  Oded Goldreich,et al.  Computational complexity: a conceptual perspective , 2008, SIGA.

[32]  Vijay Krishna,et al.  The art of conversation: eliciting information from experts through multi-stage communication , 2004, J. Econ. Theory.

[33]  Elchanan Ben-Porath,et al.  Implementation with partial provability , 2012, J. Econ. Theory.

[34]  Joel Watson,et al.  Hard Evidence and Mechanism Design , 2002, Games Econ. Behav..

[35]  A. Rubinstein,et al.  On Optimal Rules of Persuasion , 2004 .

[36]  Navin Kartik,et al.  Implementation with Evidence , 2012 .

[37]  Yvonne Schuhmacher,et al.  Mechanism Design A Linear Programming Approach , 2016 .

[38]  R. Vohra,et al.  Price discrimination through communication , 2015 .