Space-filling trees: A new perspective on incremental search for motion planning

This paper introduces space-filling trees and analyzes them in the context of sampling-based motion planning. Space-filling trees are analogous to space-filling curves, but have a branching, tree-like structure, and are defined by an incremental process that results in a tree for which every point in the space has a finite-length path that converges to it. In contrast to space-filling curves, individual paths in the tree are short, allowing any part of the space to be quickly reached from the root. We compare some basic constructions of space-filling trees to Rapidly-exploring Random Trees (RRTs), which underlie a number of popular algorithms used for sampling-based motion planning. We characterize several key tree properties related to path quality and the overall efficiency of exploration and conclude with a number of open mathematical questions.

[1]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[2]  Arthur R. Butz,et al.  Space Filling Curves and Mathematical Programming , 1968, Inf. Control..

[3]  Yossi Matias,et al.  A Video Scrambling Technique Based On Space Filling Curves , 1987, CRYPTO.

[4]  Munther A. Dahleh,et al.  Maneuver-based motion planning for nonlinear systems with symmetries , 2005, IEEE Transactions on Robotics.

[5]  Walid G. Aref,et al.  Analysis of Multi-Dimensional Space-Filling Curves , 2003, GeoInformatica.

[6]  Michael M. Curtiss,et al.  RRTs for nonlinear, discrete, and hybrid planning and control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[7]  Emilio Frazzoli,et al.  Incremental Sampling-based Algorithms for Optimal Motion Planning , 2010, Robotics: Science and Systems.

[8]  D. Hilbert Über die stetige Abbildung einer Linie auf ein Flächenstück , 1935 .

[9]  Michel Deza,et al.  Uniform Partitions of 3-space, their Relatives and Embedding , 1999, Eur. J. Comb..

[10]  Tony E Grift,et al.  GENETIC EVALUATION OF ROOT COMPLEXITY IN MAIZE , 2006 .

[11]  Peter J. H. King,et al.  Using Space-Filling Curves for Multi-dimensional Indexing , 2000, BNCOD.

[12]  Dan Halperin,et al.  Sampling-Diagram Automata: A Tool for Analyzing Path Quality in Tree Planners , 2010, WAFR.

[13]  G. Peano Sur une courbe, qui remplit toute une aire plane , 1890 .

[14]  Przemyslaw Prusinkiewicz,et al.  Simulation modeling of plants and plant ecosystems , 2000, CACM.

[15]  Sally Anne Browning,et al.  The tree machine: a highly concurrent computing environment , 1980 .

[16]  Vijay Kumar,et al.  Adaptive RRTs for Validating Hybrid Robotic Control Systems , 2004, WAFR.

[17]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[18]  Baback Moghaddam,et al.  Space-filling curves for image compression , 1991, Defense, Security, and Sensing.

[19]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[20]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[21]  D. Hilbert Ueber die stetige Abbildung einer Line auf ein Flächenstück , 1891 .

[22]  Desh Ranjan,et al.  Space-Filling Curves and Their Use in the Design of Geometric Data Structures , 1997, Theor. Comput. Sci..

[23]  Russ Tedrake,et al.  Path planning in 1000+ dimensions using a task-space Voronoi bias , 2009, 2009 IEEE International Conference on Robotics and Automation.

[24]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[25]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[26]  David Eppstein,et al.  Worst-case bounds for subadditive geometric graphs , 1993, SCG '93.