Free Space of Rigid Objects: Caging, Path Non-Existence, and Narrow Passage Detection

In this paper, we present an approach towards approximating configuration spaces of 2D and 3D rigid objects. The approximation can be used to identify caging configurations and establish path non-existence between given pairs of configurations. We prove correctness and analyse completeness of our approach. Using dual diagrams of unions of balls and uniform grids on SO(3), we provide a way to approximate a 6D configuration space of a rigid object. Depending on the desired level of guaranteed approximation accuracy, the experiments with our single core implementation show runtime between 5–21 s and 463–1558 s. Finally, we establish a connection between robotic caging and molecular caging from organic chemistry, and demonstrate that our approach is applicable to 3D molecular models. The supplementary material for this paper can be found at https://anvarava.github.io/publications/wafr-2018-supplementary-material.pdf.

[1]  Danica Kragic,et al.  A topology-based object representation for clasping, latching and hooking , 2013, 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids).

[2]  Vijay Kumar,et al.  Decentralized Algorithms for Multi-Robot Manipulation via Caging , 2004, Int. J. Robotics Res..

[3]  G. Swaminathan Robot Motion Planning , 2006 .

[4]  A. Frank van der Stappen,et al.  Caging Polygons with Two and Three Fingers , 2008, Int. J. Robotics Res..

[5]  Tamal K. Dey,et al.  Normal and Feature Approximations from Noisy Point Clouds , 2006, FSTTCS.

[6]  Martin Rother,et al.  Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. , 2016, Chemical Society reviews.

[7]  Timothy Bretl,et al.  Proving path non-existence using sampling and alpha shapes , 2012, 2012 IEEE International Conference on Robotics and Automation.

[8]  Herbert Edelsbrunner,et al.  Fast software for box intersections , 2000, SCG '00.

[9]  Danica Kragic,et al.  Caging and Path Non-existence: A Deterministic Sampling-Based Verification Algorithm , 2017, ISRR.

[10]  Danica Kragic,et al.  Integrated motion and clasp planning with virtual linking , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Andrew Blake,et al.  Caging Planar Bodies by One-Parameter Two-Fingered Gripping Systems , 1999, Int. J. Robotics Res..

[12]  Satoshi Makita,et al.  3D two-fingered caging for two types of objects: sufficient conditions and planning , 2013, Int. J. Mechatronics Autom..

[13]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[14]  Weiwei Wan,et al.  A survey of robotic caging and its applications , 2017, Adv. Robotics.

[15]  Jyh-Ming Lien,et al.  Mapping the configuration space of polygons using reduced convolution , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Danica Kragic,et al.  Free Space of Rigid Objects: Caging, Path Non-Existence, and Narrow Passage Detection , 2020 .

[17]  Dinesh Manocha,et al.  Efficient Cell Labelling and Path Non-existence Computation using C-obstacle Query , 2008, Int. J. Robotics Res..

[18]  Herbert Edelsbrunner,et al.  Deformable Smooth Surface Design , 1999, Discret. Comput. Geom..

[19]  Alberto Rodriguez,et al.  Path Connectivity of the Free Space , 2012, IEEE Transactions on Robotics.

[20]  Adrian Bowyer,et al.  A Survey of Global Configuration-Space Mapping Techniques for a Single Robot in a Static Environment , 2000, Int. J. Robotics Res..

[21]  Thanathorn Phoka,et al.  Measurement framework of partial cage quality based on probabilistic motion planning , 2013, 2013 IEEE International Conference on Robotics and Automation.

[22]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.

[23]  Steven M. LaValle,et al.  Generating Uniform Incremental Grids on SO(3) Using the Hopf Fibration , 2010, WAFR.

[24]  Alberto Rodriguez,et al.  From caging to grasping , 2011, Int. J. Robotics Res..

[25]  Tamoghna Mitra,et al.  Molecular shape sorting using molecular organic cages. , 2013, Nature chemistry.

[26]  Victor J. Milenkovic,et al.  Robust Complete Path Planning in the Plane , 2012, WAFR.

[27]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[28]  Franz Aurenhammer,et al.  An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..

[29]  Lydia E. Kavraki,et al.  A Random Sampling Scheme for Path Planning , 1997, Int. J. Robotics Res..

[30]  Jian Liu,et al.  Caging Loops in Shape Embedding Space: Theory and Computation , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[31]  Kenneth Y. Goldberg,et al.  Energy-Bounded Caging: Formal Definition and 2-D Energy Lower Bound Algorithm Based on Weighted Alpha Shapes , 2016, IEEE Robotics and Automation Letters.

[32]  Ken Goldberg,et al.  Synthesis of Energy-Bounded Planar Caging Grasps Using Persistent Homology , 2018, IEEE Transactions on Automation Science and Engineering.

[33]  Danica Kragic,et al.  Caging Grasps of Rigid and Partially Deformable 3-D Objects With Double Fork and Neck Features , 2016, IEEE Transactions on Robotics.

[34]  Vijay Kumar,et al.  Object closure and manipulation by multiple cooperating mobile robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[35]  Leonidas J. Guibas,et al.  Disconnection proofs for motion planning , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[36]  Jean-Claude Latombe,et al.  New heuristic algorithms for efficient hierarchical path planning , 1991, IEEE Trans. Robotics Autom..

[37]  Attawith Sudsang,et al.  Two-Finger Caging of Nonconvex Polytopes , 2011, IEEE Transactions on Robotics.

[38]  Danica Kragic,et al.  Grasping objects with holes: A topological approach , 2013, 2013 IEEE International Conference on Robotics and Automation.

[39]  Attawith Sudsang,et al.  Two-finger caging of concave polygon , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[40]  Satoshi Makita,et al.  3D multifingered caging: Basic formulation and planning , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.