Disentangling neural network representations for improved generalization

[1]  Abhishek Kumar,et al.  Variational Inference of Disentangled Latent Concepts from Unlabeled Observations , 2017, ICLR.

[2]  Margaret Mitchell,et al.  VQA: Visual Question Answering , 2015, International Journal of Computer Vision.

[3]  Pietro Perona,et al.  The Caltech-UCSD Birds-200-2011 Dataset , 2011 .

[4]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[5]  Yann Dauphin,et al.  Deal or No Deal? End-to-End Learning of Negotiation Dialogues , 2017, EMNLP.

[6]  Shiri Lev-Ari,et al.  Compositional structure can emerge without generational transmission , 2019, Cognition.

[7]  Samy Bengio,et al.  Understanding deep learning requires rethinking generalization , 2016, ICLR.

[8]  Jeff A. Bilmes,et al.  Deep Canonical Correlation Analysis , 2013, ICML.

[9]  Jiasen Lu,et al.  Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model , 2017, NIPS.

[10]  Lina J. Karam,et al.  A Study and Comparison of Human and Deep Learning Recognition Performance under Visual Distortions , 2017, 2017 26th International Conference on Computer Communication and Networks (ICCCN).

[11]  R. Kirk CONVENTION: A PHILOSOPHICAL STUDY , 1970 .

[12]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[13]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[14]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[15]  Maxine Eskénazi,et al.  Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation , 2018, ACL.

[16]  Joshua B. Tenenbaum,et al.  Deep Convolutional Inverse Graphics Network , 2015, NIPS.

[17]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[18]  Tsung-Hsien Wen,et al.  Latent Intention Dialogue Models , 2017, ICML.

[19]  Jason Weston,et al.  ParlAI: A Dialog Research Software Platform , 2017, EMNLP.

[20]  Yee Whye Teh,et al.  The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables , 2016, ICLR.

[21]  J. Stevenson The cultural origins of human cognition , 2001 .

[22]  Bruno A. Olshausen,et al.  Discovering Hidden Factors of Variation in Deep Networks , 2014, ICLR.

[23]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[24]  Bernhard Schölkopf,et al.  Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations , 2018, ICML.

[25]  Stefan Lee,et al.  ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks , 2019, NeurIPS.

[26]  Hugo Larochelle,et al.  Correlational Neural Networks , 2015, Neural Computation.

[27]  S. Kirby,et al.  The cultural evolution of language. , 2016, Current opinion in psychology.

[28]  Joelle Pineau,et al.  A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues , 2016, AAAI.

[29]  Demis Hassabis,et al.  Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm , 2017, ArXiv.

[30]  Pararth Shah,et al.  Recommendation as a Communication Game: Self-Supervised Bot-Play for Goal-oriented Dialogue , 2019, EMNLP.

[31]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[32]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[33]  San Cristóbal Mateo,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996 .

[34]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[35]  S. Kirby,et al.  Complex Adaptive Systems and the Origins of Adaptive Structure: What Experiments Can Tell Us , 2009 .

[36]  Yoshua Bengio,et al.  Maxout Networks , 2013, ICML.

[37]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Zhuowen Tu,et al.  Aggregated Residual Transformations for Deep Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[40]  Martial Hebert,et al.  Learning by Asking Questions , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[41]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[42]  Shimon Whiteson,et al.  Learning to Communicate with Deep Multi-Agent Reinforcement Learning , 2016, NIPS.

[43]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[44]  Elia Bruni,et al.  Co-evolution of language and agents in referential games , 2020, EACL.

[45]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[46]  Marco Baroni,et al.  Generalization without Systematicity: On the Compositional Skills of Sequence-to-Sequence Recurrent Networks , 2017, ICML.

[47]  Anca D. Dragan,et al.  Translating Neuralese , 2017, ACL.

[48]  Matthias Bethge,et al.  A note on the evaluation of generative models , 2015, ICLR.

[49]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Peter Norvig,et al.  Artificial intelligence - a modern approach, 2nd Edition , 2003, Prentice Hall series in artificial intelligence.

[51]  Barak A. Pearlmutter,et al.  G-maximization: An unsupervised learning procedure for discovering regularities , 1987 .

[52]  Simon Kirby,et al.  Spontaneous evolution of linguistic structure-an iterated learning model of the emergence of regularity and irregularity , 2001, IEEE Trans. Evol. Comput..

[53]  Ted Briscoe Grammatical acquisition: Inductive bias and coevolution of language and the language acquisition device , 2000 .

[54]  Morten H. Christiansen,et al.  Language evolution: consensus and controversies , 2003, Trends in Cognitive Sciences.

[55]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[56]  Xinlei Chen,et al.  Pythia v0.1: the Winning Entry to the VQA Challenge 2018 , 2018, ArXiv.

[57]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[58]  Evangelos Kanoulas,et al.  Examining Cooperation in Visual Dialog Models , 2017, ArXiv.

[59]  Amy Perfors,et al.  Simulated Evolution of Language: a Review of the Field , 2002, J. Artif. Soc. Soc. Simul..

[60]  José M. F. Moura,et al.  Natural Language Does Not Emerge ‘Naturally’ in Multi-Agent Dialog , 2017, EMNLP.

[61]  Sjoerd van Steenkiste,et al.  Are Disentangled Representations Helpful for Abstract Visual Reasoning? , 2019, NeurIPS.

[62]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[63]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Yoshua Bengio,et al.  Knowledge Matters: Importance of Prior Information for Optimization , 2013, J. Mach. Learn. Res..

[65]  Maxine Eskénazi,et al.  Zero-Shot Dialog Generation with Cross-Domain Latent Actions , 2018, SIGDIAL Conference.

[66]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[67]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[68]  Mario Bertero,et al.  The Stability of Inverse Problems , 1980 .

[69]  J. Urgen Schmidhuber,et al.  Learning Factorial Codes by Predictability Minimization , 1992, Neural Computation.

[70]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[71]  Martin A. Nowak,et al.  The evolution of syntactic communication , 2000, Nature.

[72]  Paul Vogt,et al.  The emergence of compositional structures in perceptually grounded language games , 2005, Artif. Intell..

[73]  Rob Fergus,et al.  Learning Multiagent Communication with Backpropagation , 2016, NIPS.

[74]  N. McGlynn Thinking fast and slow. , 2014, Australian veterinary journal.

[75]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[76]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[77]  Simon Kirby,et al.  Natural Language From Artificial Life , 2002, Artificial Life.

[78]  Yuandong Tian,et al.  Hierarchical Decision Making by Generating and Following Natural Language Instructions , 2019, NeurIPS.

[79]  Jianfeng Gao,et al.  A Diversity-Promoting Objective Function for Neural Conversation Models , 2015, NAACL.

[80]  Mike Lewis,et al.  Hierarchical Text Generation and Planning for Strategic Dialogue , 2017, ICML.

[81]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  Vighnesh Birodkar,et al.  Unsupervised Learning of Disentangled Representations from Video , 2017, NIPS.

[83]  Stefan Lee,et al.  Evaluating Visual Conversational Agents via Cooperative Human-AI Games , 2017, HCOMP.

[84]  Margaret Mitchell,et al.  Generating Natural Questions About an Image , 2016, ACL.

[85]  Anton van den Hengel,et al.  Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[86]  Simon Kirby,et al.  Minimal Requirements for the Emergence of Learned Signaling , 2014, Cogn. Sci..

[87]  Henry Brighton,et al.  Compositional Syntax From Cultural Transmission , 2002, Artificial Life.

[88]  Yoshua Bengio,et al.  Slow, Decorrelated Features for Pretraining Complex Cell-like Networks , 2009, NIPS.

[89]  Simon Kirby,et al.  Iterated Learning: A Framework for the Emergence of Language , 2003, Artificial Life.

[90]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[91]  L. Cooper,et al.  When Networks Disagree: Ensemble Methods for Hybrid Neural Networks , 1992 .

[92]  Qiang Chen,et al.  Network In Network , 2013, ICLR.

[93]  Christoph H. Lampert,et al.  Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the Ugly , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[95]  Dana H. Brooks,et al.  Structured Disentangled Representations , 2018, AISTATS.

[96]  Yoshua Bengio,et al.  Evolving Culture vs Local Minima , 2012, ArXiv.

[97]  Stefan Lee,et al.  Visual Curiosity: Learning to Ask Questions to Learn Visual Recognition , 2018, CoRL.

[98]  Oleksandr Makeyev,et al.  Neural network with ensembles , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[99]  Jason Lee,et al.  Emergent Translation in Multi-Agent Communication , 2017, ICLR.

[100]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[101]  Geoffrey Zweig,et al.  Hybrid Code Networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning , 2017, ACL.

[102]  Simon Kirby,et al.  Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language , 2008, Proceedings of the National Academy of Sciences.

[103]  Yash Goyal,et al.  Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[104]  S. Kirby,et al.  Iterated learning and the evolution of language , 2014, Current Opinion in Neurobiology.

[105]  Michael Bowling,et al.  Ease-of-Teaching and Language Structure from Emergent Communication , 2019, NeurIPS.

[106]  Razvan Pascanu,et al.  On the Number of Linear Regions of Deep Neural Networks , 2014, NIPS.

[107]  Ben Poole,et al.  Categorical Reparametrization with Gumble-Softmax , 2017, ICLR 2017.

[108]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[109]  Maxine Eskénazi,et al.  Rethinking Action Spaces for Reinforcement Learning in End-to-end Dialog Agents with Latent Variable Models , 2019, NAACL.

[110]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[111]  Bolei Zhou,et al.  Learning Deep Features for Scene Recognition using Places Database , 2014, NIPS.

[112]  Ashwin K. Vijayakumar,et al.  Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models , 2016, ArXiv.

[113]  José M. F. Moura,et al.  Visual Dialog , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[114]  John E. Laird,et al.  The Soar Cognitive Architecture , 2012 .

[115]  Xinlei Chen,et al.  Mind's eye: A recurrent visual representation for image caption generation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[116]  Hugo Larochelle,et al.  GuessWhat?! Visual Object Discovery through Multi-modal Dialogue , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[117]  Nando de Freitas,et al.  Compositional Obverter Communication Learning From Raw Visual Input , 2018, ICLR.

[118]  Aaron Mininger,et al.  Interactively Learning Strategies for Handling References to Unseen or Unknown Objects , 2016 .

[119]  Pieter Abbeel,et al.  Emergence of Grounded Compositional Language in Multi-Agent Populations , 2017, AAAI.

[120]  Roger C. Schank,et al.  Scripts, plans, goals and understanding: an inquiry into human knowledge structures , 1978 .

[121]  W. Strange Evolution of language. , 1984, JAMA.

[122]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[123]  Joelle Pineau,et al.  Piecewise Latent Variables for Neural Variational Text Processing , 2016, EMNLP.

[124]  Stephen Clark,et al.  Emergence of Linguistic Communication from Referential Games with Symbolic and Pixel Input , 2018, ICLR.

[125]  Aurko Roy,et al.  Fast Decoding in Sequence Models using Discrete Latent Variables , 2018, ICML.

[126]  S. Kirby,et al.  Language evolution in the laboratory , 2010, Trends in Cognitive Sciences.

[127]  Ivan Titov,et al.  Emergence of Language with Multi-agent Games: Learning to Communicate with Sequences of Symbols , 2017, NIPS.

[128]  S. Pinker,et al.  Natural language and natural selection , 1990, Behavioral and Brain Sciences.

[129]  Alexander Peysakhovich,et al.  Multi-Agent Cooperation and the Emergence of (Natural) Language , 2016, ICLR.

[130]  Stefan Lee,et al.  Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[131]  Harris Drucker,et al.  Comparison of learning algorithms for handwritten digit recognition , 1995 .

[132]  L. Barsalou,et al.  Whither structured representation? , 1999, Behavioral and Brain Sciences.