Intracellular recording in behaving animals

Electrophysiological recordings from behaving animals provide an unparalleled view into the functional role of individual neurons. Intracellular approaches can be especially revealing as they provide information about a neuron's inputs and intrinsic cellular properties, which together determine its spiking output. Recent technical developments have made intracellular recording possible during an ever-increasing range of behaviors in both head-fixed and freely moving animals. These recordings have yielded fundamental insights into the cellular and circuit mechanisms underlying neural activity during natural behaviors in such areas as sensory perception, motor sequence generation, and spatial navigation, forging a direct link between cellular and systems neuroscience.

[1]  Alan Gelperin,et al.  Sparse Odor Coding in Awake Behaving Mice , 2006, The Journal of Neuroscience.

[2]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[3]  Hanspeter A. Mallot,et al.  Rats in Virtual Reality : The Development of an Advanced Method to Study Animal Behaviour , 2008 .

[4]  David S. Greenberg,et al.  Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex , 2007, The Journal of Neuroscience.

[5]  R. Romo,et al.  Neuronal correlates of parametric working memory in the prefrontal cortex , 1999, Nature.

[6]  R. Mooney Different Subthreshold Mechanisms Underlie Song Selectivity in Identified HVc Neurons of the Zebra Finch , 2000, The Journal of Neuroscience.

[7]  R. Morris,et al.  Place navigation impaired in rats with hippocampal lesions , 1982, Nature.

[8]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[9]  Andreas T Schaefer,et al.  Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics , 2011, Nature Neuroscience.

[10]  Method for stable intracellular recordings of spinal α-motoneurons during treadmill walking in awake, intact cats , 1988, Brain Research.

[11]  Laurie D. Burns,et al.  High-speed, miniaturized fluorescence microscopy in freely moving mice , 2008, Nature Methods.

[12]  Dezhe Z. Jin,et al.  Support for a synaptic chain model of neuronal sequence generation , 2010, Nature.

[13]  Michale S Fee,et al.  New methods for localizing and manipulating neuronal dynamics in behaving animals , 2011, Current Opinion in Neurobiology.

[14]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[15]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[16]  P. J. Sjöström,et al.  Spike timing, calcium signals and synaptic plasticity , 2002, Current Opinion in Neurobiology.

[17]  H. Sebastian Seung,et al.  Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC , 2007, Journal of Computational Neuroscience.

[18]  D Kleinfeld,et al.  Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. , 1997, Journal of neurophysiology.

[19]  Nace L. Golding,et al.  Dendritic Calcium Spike Initiation and Repolarization Are Controlled by Distinct Potassium Channel Subtypes in CA1 Pyramidal Neurons , 1999, The Journal of Neuroscience.

[20]  Jean-Michel Deniau,et al.  Distinct Patterns of Striatal Medium Spiny Neuron Activity during the Natural Sleep–Wake Cycle , 2006, The Journal of Neuroscience.

[21]  Shun-ichi Amari,et al.  Learning Patterns and Pattern Sequences by Self-Organizing Nets of Threshold Elements , 1972, IEEE Transactions on Computers.

[22]  Curtis C Bell,et al.  Memory-based expectations in electrosensory systems , 2001, Current Opinion in Neurobiology.

[23]  M. Fee,et al.  Using temperature to analyze temporal dynamics in the songbird motor pathway , 2008, Nature.

[24]  G. Rose,et al.  Auditory midbrain neurons that count , 2002, Nature Neuroscience.

[25]  Albert K. Lee,et al.  Whole-Cell Recordings in Freely Moving Rats , 2006, Neuron.

[26]  Ohad Ben-Shahar,et al.  Stochastic Emergence of Repeating Cortical Motifs in Spontaneous Membrane Potential Fluctuations In Vivo , 2007, Neuron.

[27]  H. Seung,et al.  In vivo intracellular recording and perturbation of persistent activity in a neural integrator , 2001, Nature Neuroscience.

[28]  D. Tank,et al.  Intracellular dynamics of hippocampal place cells during virtual navigation , 2009, Nature.

[29]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[30]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[31]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[32]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[33]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[34]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[35]  R. Morris,et al.  Distinct components of spatial learning revealed by prior training and NMDA receptor blockade , 1995, Nature.

[36]  Randy M. Bruno,et al.  Effects and Mechanisms of Wakefulness on Local Cortical Networks , 2011, Neuron.

[37]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[38]  David S. Greenberg,et al.  Visually evoked activity in cortical cells imaged in freely moving animals , 2009, Proceedings of the National Academy of Sciences.

[39]  J. Tiago Gonçalves,et al.  Internally Mediated Developmental Desynchronization of Neocortical Network Activity , 2009, The Journal of Neuroscience.

[40]  Daniel D. Lee,et al.  Stability of the Memory of Eye Position in a Recurrent Network of Conductance-Based Model Neurons , 2000, Neuron.

[41]  A. Borst,et al.  Central gating of fly optomotor response , 2010, Proceedings of the National Academy of Sciences.

[42]  Holger G Krapp,et al.  Nonlinear Integration of Visual and Haltere Inputs in Fly Neck Motor Neurons , 2009, The Journal of Neuroscience.

[43]  J. Taube,et al.  Hippocampal spatial representations require vestibular input , 2002, Hippocampus.

[44]  Michael Okun,et al.  The Subthreshold Relation between Cortical Local Field Potential and Neuronal Firing Unveiled by Intracellular Recordings in Awake Rats , 2010, The Journal of Neuroscience.

[45]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[46]  W. Kristan,et al.  Behavioral choice by presynaptic inhibition of tactile sensory terminals , 2009, Nature Neuroscience.

[47]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[48]  C. Petersen,et al.  Correlating whisker behavior with membrane potential in barrel cortex of awake mice , 2006, Nature Neuroscience.

[49]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[50]  Nathaniel B Sawtell,et al.  Multimodal Integration in Granule Cells as a Basis for Associative Plasticity and Sensory Prediction in a Cerebellum-like Circuit , 2010, Neuron.

[51]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[52]  Sarah M N Woolley,et al.  Anesthetic state modulates excitability but not spectral tuning or neural discrimination in single auditory midbrain neurons. , 2011, Journal of neurophysiology.

[53]  William B. Kerfoot,et al.  Orientometer for Study of Insect Behavior , 1968, Science.

[54]  K. Svoboda,et al.  The Functional Microarchitecture of the Mouse Barrel Cortex , 2007, Neuroscience Research.

[55]  Michael Brecht,et al.  Head-anchored whole-cell recordings in freely moving rats , 2009, Nature Protocols.

[56]  D. Kleinfeld,et al.  Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system , 2009, Nature Neuroscience.

[57]  L. Barrett‐Lennard,et al.  Graded persistent activity in entorhinal cortex neurons , 2002 .

[58]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[59]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[60]  Asohan Amarasingham,et al.  Internally Generated Cell Assembly Sequences in the Rat Hippocampus , 2008, Science.

[61]  R. Morris Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D- aspartate receptor antagonist AP5 , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Awake Mice , 2010 .

[63]  W. Newsome,et al.  Microstimulation in visual area MT: effects on direction discrimination performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[65]  P. Best,et al.  Place cells and silent cells in the hippocampus of freely-behaving rats , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  Michael B. Reiser,et al.  Corrigendum: Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior , 2011, Nature Methods.

[67]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[68]  Ian R. Wickersham,et al.  Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus , 2010, Proceedings of the National Academy of Sciences.

[69]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[70]  Michael J Higley,et al.  Integration of synaptic responses to neighboring whiskers in rat barrel cortex in vivo. , 2005, Journal of neurophysiology.

[71]  C D Woody,et al.  Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses. , 1993, Journal of neurophysiology.

[72]  Winfried Denk,et al.  Targeted Whole-Cell Recordings in the Mammalian Brain In Vivo , 2003, Neuron.

[73]  M. Fee,et al.  Active Stabilization of Electrodes for Intracellular Recording in Awake Behaving Animals , 2000, Neuron.

[74]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[75]  R. Baker,et al.  Eye position and eye velocity integrators reside in separate brainstem nuclei. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[76]  E. Fetz,et al.  Synaptic Interactions between Primate Precentral Cortex Neurons Revealed by Spike-Triggered Averaging of Intracellular Membrane Potentials In Vivo , 1996, The Journal of Neuroscience.

[77]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[78]  Ian R. Wickersham,et al.  Cortical representations of olfactory input by trans-synaptic tracing , 2011, Nature.

[79]  Michael Brecht,et al.  Impact of Spikelets on Hippocampal CA1 Pyramidal Cell Activity During Spatial Exploration , 2010, Science.

[80]  R. Xie,et al.  Whole cell recordings of intrinsic properties and sound-evoked responses from the inferior colliculus , 2008, Neuroscience.

[81]  P. Maclean,et al.  Intracellular Olfactory Response of Hippocampal Neurons in Awake, Sitting Squirrel Monkeys , 1967, Science.

[82]  A Schnee,et al.  Rats are able to navigate in virtual environments , 2005, Journal of Experimental Biology.

[83]  O. Paulsen,et al.  Identification of the current generator underlying cholinergically induced gamma frequency field potential oscillations in the hippocampal CA3 region , 2010, The Journal of physiology.

[84]  Alain Destexhe,et al.  Inhibition Determines Membrane Potential Dynamics and Controls Action Potential Generation in Awake and Sleeping Cat Cortex , 2007, The Journal of Neuroscience.

[85]  Noah A. Russell,et al.  Long-Term Effects of Permanent Vestibular Lesions on Hippocampal Spatial Firing , 2003, The Journal of Neuroscience.

[86]  Gilles Laurent,et al.  A Simple Connectivity Scheme for Sparse Coding in an Olfactory System , 2007, The Journal of Neuroscience.

[87]  A. C. Yu,et al.  Temporal Hierarchical Control of Singing in Birds , 1996, Science.

[88]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[89]  W. Welker Analysis of Sniffing of the Albino Rat 1) , 1964 .

[90]  G. Rose,et al.  Counting on Inhibition and Rate-Dependent Excitation in the Auditory System , 2007, The Journal of Neuroscience.

[91]  Yuji Ikegaya,et al.  Statistical Significance of Precisely Repeated Intracellular Synaptic Patterns , 2008, PloS one.

[92]  S. Tonegawa,et al.  The Essential Role of Hippocampal CA1 NMDA Receptor–Dependent Synaptic Plasticity in Spatial Memory , 1996, Cell.

[93]  C. L. Cox,et al.  Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[94]  K. D. Punta,et al.  An ultra-sparse code underlies the generation of neural sequences in a songbird , 2002 .

[95]  Berthold Hedwig,et al.  The Cellular Basis of a Corollary Discharge , 2006, Science.

[96]  C. Schreiner,et al.  A synaptic memory trace for cortical receptive field plasticity , 2007, Nature.

[97]  E. Kandel,et al.  Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. , 1961, Journal of neurophysiology.

[98]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[99]  Alcino J. Silva,et al.  CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala , 2009, Nature Neuroscience.

[100]  Em Mead,et al.  Society for Neuroscience Annual Meeting , 2009 .

[101]  Rune W. Berg,et al.  Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. , 2003, Journal of neurophysiology.

[102]  Y. Frégnac,et al.  Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex , 1996, Journal of Physiology-Paris.

[103]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[104]  M. Quirk,et al.  Experience-Dependent Asymmetric Shape of Hippocampal Receptive Fields , 2000, Neuron.

[105]  J. Magee,et al.  Pathway Interactions and Synaptic Plasticity in the Dendritic Tuft Regions of CA1 Pyramidal Neurons , 2009, Neuron.

[106]  G. Laurent,et al.  Normalization for Sparse Encoding of Odors by a Wide-Field Interneuron , 2011, Science.

[107]  Christopher C. Pack,et al.  Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys , 2001, Nature.

[108]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[109]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[110]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[111]  G. Lynch,et al.  Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5 , 1986, Nature.

[112]  D. Katz,et al.  Behavioral states, network states, and sensory response variability. , 2008, Journal of neurophysiology.

[113]  Lin Tian,et al.  Functional imaging of hippocampal place cells at cellular resolution during virtual navigation , 2010, Nature Neuroscience.

[114]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[115]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[116]  H. Seung,et al.  Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. , 2003, Cerebral cortex.

[117]  Michael Brecht,et al.  Intracellular Determinants of Hippocampal CA1 Place and Silent Cell Activity in a Novel Environment , 2011, Neuron.

[118]  J. Kauer,et al.  Whole-Cell Patch-Clamp Recording Reveals Subthreshold Sound-Evoked Postsynaptic Currents in the Inferior Colliculus of Awake Bats , 1996, The Journal of Neuroscience.

[119]  Berthold Hedwig,et al.  A corollary discharge maintains auditory sensitivity during sound production , 2002, Nature.

[120]  Mengru Li,et al.  Stable propagation of a burst through a one-dimensional homogeneous excitatory chain model of songbird nucleus HVC. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[121]  M. Sirota,et al.  Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. , 1998, Journal of neurophysiology.