Opponent Inhibition A Developmental Model of Layer 4 of the Neocortical Circuit

[1]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[2]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[3]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[4]  K. Albus A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat , 1975, Experimental brain research.

[5]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[6]  D. Pollen,et al.  Phase relationships between adjacent simple cells in the visual cortex. , 1981, Science.

[7]  L. Palmer,et al.  Receptive-field structure in cat striate cortex. , 1981, Journal of neurophysiology.

[8]  K. Tanaka Cross-correlation analysis of geniculostriate neuronal relationships in cats. , 1983, Journal of neurophysiology.

[9]  C. Gilbert Microcircuitry of the visual cortex. , 1983, Annual review of neuroscience.

[10]  Y. Frégnac,et al.  Development of neuronal selectivity in primary visual cortex of cat. , 1984, Physiological reviews.

[11]  K. Albus,et al.  Early post‐natal development of neuronal function in the kitten's visual cortex: a laminar analysis. , 1984, The Journal of physiology.

[12]  M. Levine,et al.  The variability of the maintained discharge of cat dorsal lateral geniculate cells. , 1986, The Journal of physiology.

[13]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[15]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  D. Mastronarde Correlated firing of retinal ganglion cells , 1989, Trends in Neurosciences.

[17]  D. Prince,et al.  Postnatal maturation of the GABAergic system in rat neocortex. , 1991, Journal of neurophysiology.

[18]  D. Ferster,et al.  EPSP-IPSP interactions in cat visual cortex studied with in vivo whole- cell patch recording , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  A. L. Humphrey,et al.  Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. , 1992, Journal of neurophysiology.

[20]  D. Pollen,et al.  Interneuronal interaction between members of quadrature phase and anti-phase pairs in the cat's visual cortex , 1992, Vision Research.

[21]  E. Callaway,et al.  Development of axonal arbors of layer 4 spiny neurons in cat striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  Y. Komatsu,et al.  Long-term modification of inhibitory synaptic transmission in developing visual cortex. , 1993, Neuroreport.

[23]  Y. Komatsu,et al.  Age-dependent long-term potentiation of inhibitory synaptic transmission in rat visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  Kenneth D. Miller,et al.  The Role of Constraints in Hebbian Learning , 1994, Neural Computation.

[25]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  Klaus Schulten,et al.  Models of Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical Comparison , 1995, Neural Computation.

[27]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[28]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[29]  Y. Komatsu,et al.  GABAB Receptors, Monoamine Receptors, and Postsynaptic Inositol Trisphosphate-Induced Ca2+ Release Are Involved in the Induction of Long-Term Potentiation at Visual Cortical Inhibitory Synapses , 1996, The Journal of Neuroscience.

[30]  K. Miller Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns* , 1996 .

[31]  X. Leinekugel,et al.  GABAA, NMDA and AMPA receptors: a developmentally regulated `ménage à trois' , 1997, Trends in Neurosciences.

[32]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[33]  Risto Miikkulainen,et al.  Topographic Receptive Fields and Patterned Lateral Interaction in a Self-Organizing Model of the Primary Visual Cortex , 1997, Neural Computation.

[34]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[35]  M. Stryker,et al.  The role of visual experience in the development of columns in cat visual cortex. , 1998, Science.

[36]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[37]  K. Miller,et al.  Correlation-Based Development of Ocularly Matched Orientation and Ocular Dominance Maps: Determination of Required Input Activities , 1998, The Journal of Neuroscience.

[38]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[39]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[40]  Kenneth D. Miller,et al.  Equivalence of a Sprouting-and-Retraction Model and Correlation-Based Plasticity Models of Neural Development , 1998, Neural Computation.

[41]  L. Palmer,et al.  Temporal diversity in the lateral geniculate nucleus of cat , 1998, Visual Neuroscience.

[42]  M. Merzenich,et al.  Optimizing sound features for cortical neurons. , 1998, Science.

[43]  Stephen Grossberg,et al.  A neural network model for the development of simple and complex cell receptive fields within cortical maps of orientation and ocular dominance , 1998, Neural Networks.

[44]  R. Wong,et al.  Retinal waves and visual system development. , 1999, Annual review of neuroscience.

[45]  M. Weliky,et al.  Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. , 1999, Science.

[46]  I. Ohzawa,et al.  Functional Micro-Organization of Primary Visual Cortex: Receptive Field Analysis of Nearby Neurons , 1999, The Journal of Neuroscience.

[47]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[48]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[49]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[50]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.

[51]  Alessandra Angelucci,et al.  Induction of visual orientation modules in auditory cortex , 2000, Nature.

[52]  Tanaka The role of , 2000, Journal of insect physiology.

[53]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[54]  S. Nelson,et al.  Hebb and homeostasis in neuronal plasticity , 2000, Current Opinion in Neurobiology.

[55]  B. Chapman,et al.  Cortical Cell Orientation Selectivity Fails to Develop in the Absence of ON-Center Retinal Ganglion Cell Activity , 2000, The Journal of Neuroscience.

[56]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[57]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[58]  D. Feldman,et al.  Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex , 2000, Neuron.

[59]  C. Chiu,et al.  Spontaneous Activity in Developing Ferret Visual Cortex In Vivo , 2001, The Journal of Neuroscience.

[60]  Nicholas J. Priebe,et al.  Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning. , 2001, Journal of neurophysiology.

[61]  D. Ferster,et al.  Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex , 2001, Nature Neuroscience.

[62]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[63]  J. Leo van Hemmen,et al.  Combined Hebbian development of geniculocortical and lateral connectivity in a model of primary visual cortex , 2001, Biological Cybernetics.

[64]  K. Miller,et al.  Electronic Mail: , 2001 .

[65]  K. Miller,et al.  Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning , 2001, Nature Neuroscience.

[66]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[67]  Geoffrey J. Goodhill,et al.  Topography and ocular dominance: a model exploring positive correlations , 1993, Biological Cybernetics.

[68]  G. Sclar,et al.  Expression of “retinal” contrast gain control by neurons of the cat's lateral geniculate nucleus , 2004, Experimental Brain Research.

[69]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.