Estimation et analyse de champs denses de vitesses d'écoulements fluides. (Estimation and analysis of dense fluid flows)

Cette etude a pour cadre l'analyse de mouvements fluides dans des sequences d'images et s'articule autour de deux axes. Nous traitons en premier lieu le probleme de l'estimation du mouvement. Dans un contexte d'imagerie fluide, la luminance des images fait parfois apparaitre de fortes distorsions spatiales et temporelles, rendant delicate l'utilisation de techniques standard issues de la Vision par Ordinateur, originalement concues pour des mouvements rigides et reposant sur une hypothese d'invariance de la fonction de luminance. Nous proposons un estimateur de mouvement modelise au moyen d'une formulation energetique et specialement dedie a l'estimation du mouvement fluide. La fonctionnelle consideree est composee d'un terme d'attache aux donnees original issu de l'equation de continuite de la mecanique des fluides. Ce nouveau modele de donnees, specifie pour etre aisement integre dans un schema multiresolution, est associe a une regularisation de type ``div-curl''. Les performances de cet estimateur sont experimentalement demontrees sur des images synthetiques et reelles meteorologiques. Une validation de la methode sur un ecoulement experimental representant une ``couche de melange'' est par ailleurs presentee. L'interet de l'etude est en second lieu porte sur l'analyse d'un champ de deplacement prealablement estime, relatif a un mouvement fluide. Nous proposons une methode visant a extraire les vortex et puits/sources de l'ecoulement en s'appuyant sur le modele de Rankine. Ce probleme est essentiel dans de nombreuses applications comme par exemple la detection d'importants evenements meteorologiques (depressions, cellules convectives, ...) ou la caracterisation d'ecoulements experimentaux. La connaissance de telles structures autorise par ailleurs une representation parametrique de l'ecoulement. La methode que nous proposons s'appuie sur une representation analytique du champ des vitesses e permet d'extraire d'autres informations pertinentes relatives a l'ecoulement (fonctions de potentiels, decomposition selon Helmholtz de l'ecoulement, points singuliers, ...). L'approche presentee sera experimentalement etudiee sur des ecoulement representant divers phenomenes physiques.

[1]  Hans-Gerd Maas,et al.  Feature tracking in 3-D fluid tomography sequences , 1994, Proceedings of 1st International Conference on Image Processing.

[2]  Qing Yang,et al.  Feature based visualization of geophysical data , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[3]  Jake K. Aggarwal,et al.  Human Motion Analysis: A Review , 1999, Comput. Vis. Image Underst..

[4]  M. S. Chong,et al.  A Description of Eddying Motions and Flow Patterns Using Critical-Point Concepts , 1987 .

[5]  Martin Szummer,et al.  Temporal texture modeling , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[6]  Michal Irani,et al.  Detecting and Tracking Multiple Moving Objects Using Temporal Integration , 1992, ECCV.

[7]  David Suter,et al.  Motion estimation and vector splines , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Yoshikazu Nakajima,et al.  Acquisition of Symbolic Description from Flow Fields: A New Approach Based on a Fluid Model , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Joachim Weickert,et al.  On Discontinuity-Preserving Optic Flow , 1998 .

[10]  Ioannis A. Kakadiaris,et al.  Model-Based Estimation of 3D Human Motion , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[12]  G. Warnecke,et al.  A functional analytic method to derive displacement vector fields from satellite image sequences , 1996 .

[13]  Étienne Mémin,et al.  On the Study of VLSI Derivation for Optical Flow Estimation , 2000, Int. J. Pattern Recognit. Artif. Intell..

[14]  Robin N. Strickland,et al.  Representing and Visualizing Fluid Flow Images and Velocimetry Data by Nonlinear Dynamical Systems , 1995, CVGIP Graph. Model. Image Process..

[15]  Patrick Pérez,et al.  Dense estimation and object-based segmentation of the optical flow with robust techniques , 1998, IEEE Trans. Image Process..

[16]  Dominique Heitz Etude expérimentale du sillage d'un barreau cylindrique se développant dans une couche de mélange plane turbulente , 1999 .

[17]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[18]  Stanley Osher,et al.  Shocks and other nonlinear filtering applied to image processing , 1991, Optics & Photonics.

[19]  Patrick Bouthemy,et al.  The Derivation Of Qualitative Information In Motion Analysis , 1990, ECCV.

[20]  Patrick Pérez,et al.  Hierarchical Estimation and Segmentation of Dense Motion Fields , 2002, International Journal of Computer Vision.

[21]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[22]  Yiannis Aloimonos,et al.  Observability of 3D Motion , 2000, International Journal of Computer Vision.

[23]  Chiao-fe Shu,et al.  Direct estimation and error analysis for oriented patterns , 1993 .

[24]  Jason I. Gobat,et al.  Robust velocity estimates, stream functions, and simulated Lagrangian drifters from sequential spacecraft data , 1994, IEEE Trans. Geosci. Remote. Sens..

[25]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[26]  Guy Rochard,et al.  Tracking and Characterization of Highly Deformable Cloud Structures , 2000, ECCV.

[27]  J. Shukla,et al.  Computation of Non-Divergent Streamfunction and Irrotational Velocity Potential from the Observed Winds , 1974 .

[28]  Dmitry B. Goldgof,et al.  Fluid structure and motion analysis from multi-spectrum 2D cloud image sequences , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[29]  Christoph Schnörr On Functionals with Greyvalue-Controlled Smoothness Terms for Determining Optical Flow , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  A. Perry,et al.  Simple three-dimensional vortex motions in coflowing jets and wakes , 1984, Journal of Fluid Mechanics.

[31]  Rachid Deriche,et al.  Computing Optical Flow via Variational Techniques , 1999, SIAM J. Appl. Math..

[32]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[33]  Perez,et al.  2 - Une approche multiéchelle à l'analyse d'images par champs markoviens , 1992 .

[34]  Tae-Young Lee,et al.  Low power motion estimation algorithm based on temporal correlation and its architecture , 2001, Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467).

[35]  Robin N. Strickland,et al.  Nonlinear phase portrait models for oriented textures , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Patrick Bouthemy,et al.  Modeling of Atmospheric Disturbances in Meteorological Pictures , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[38]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[39]  Julio Esclarín Monreal,et al.  A PDE model for computing the optimal flow , 1999 .

[40]  Michael J. Black,et al.  Estimating Optical Flow in Segmented Images Using Variable-Order Parametric Models With Local Deformations , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Ken D. Sauer,et al.  A generalized Gaussian image model for edge-preserving MAP estimation , 1993, IEEE Trans. Image Process..

[42]  Ramesh C. Jain,et al.  Vector Field Analysis for Oriented Patterns , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Isabelle Herlin,et al.  Analysis of cloudy structures evolution on meteorological satellite acquisitions , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[44]  M. Barlaud,et al.  Nonlinear image processing: modeling and fast algorithm for regularization with edge detection , 1995, Proceedings., International Conference on Image Processing.

[45]  Dong Wook Kim,et al.  Adaptive motion estimation based on spatio-temporal correlation , 1998, Signal Process. Image Commun..

[46]  J. Schmetz,et al.  Low-Level Cloud Motion Winds from Meteosat High-Resolution Visible Imagery , 1997 .

[47]  Allan D. Jepson,et al.  Simple method for computing 3D motion and depth , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[48]  Heinrich Woick Verification of cloud motion winds , 1994 .

[49]  ERIC A. SMITH,et al.  Automated Cloud Tracking Using Precisely Aligned Digital ATS Pictures , 1972, IEEE Transactions on Computers.

[50]  Francoise J. Preteux,et al.  Robust parametric estimation over optimal support of fluid flow structure in multispectral image sequences , 2000, SPIE Optics + Photonics.

[51]  Jean-Marc Odobez Estimation, detection et segmentation du mouvement : une approche robuste et markovienne , 1994 .

[52]  D. Hart Super-resolution PIV by recursive local-correlation , 2000 .

[53]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[54]  J. Palis,et al.  Geometric theory of dynamical systems , 1982 .

[55]  D. Suter,et al.  DIV-CURL vector quasi-interpolation on a finite domain , 1999 .

[56]  Yann Ricquebourg Analyse de mouvements articules : mesure et suivi 2d ; application a la telesurveillance , 1997 .

[57]  Shyamal Das Peddada,et al.  Least average residual algorithm (LARA) for tracking the motion of Arctic sea ice , 1996, IEEE Trans. Geosci. Remote. Sens..

[58]  Fang Chen,et al.  Image coordinate transformation based on DIV-CURL vector splines , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[59]  Q. X. Wu,et al.  Correlation and relaxation labelling: An experimental investigation on fast algorithms , 1997 .

[60]  A. F. Hasler,et al.  High-Resolution Wind Fields within the Inner Core and Eye of a Mature Tropical Cyclone from GOES 1-min Images , 1998 .

[61]  R. Deriche,et al.  Les EDP en traitement des images et vision par ordinateur , 1995 .

[62]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[63]  André Szantai Construction de trajectoires a partir d'images de satellites : etude de systemes nuageux , 1996 .

[64]  Yves Doisy General motion estimation from correlation sonar , 1999 .

[65]  M. Raffel,et al.  Experimental and numerical investigations of dynamic stall on a pitching airfoil , 1996 .

[66]  Man-Wai Mak,et al.  A lip-tracking system based on morphological processing and block matching techniques , 1994, Signal Process. Image Commun..

[67]  W. Merzkirch,et al.  Comparative study of correlation-based PIV evaluation methods , 1999 .

[68]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Harpreet S. Sawhney,et al.  Compact Representations of Videos Through Dominant and Multiple Motion Estimation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  Niklas Nordström,et al.  Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection , 1990, Image Vis. Comput..

[71]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[72]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[73]  Eric A. Smith,et al.  Comments on “An Automated Technique for obtaining Cloud Motion From Geosynchronous Satellite Data Using Cross Correlation , 1972 .

[74]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[75]  C. Stiller,et al.  Estimating motion in image sequences , 1999, IEEE Signal Process. Mag..

[76]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[77]  Nikos Maglaveras,et al.  Parametric 4D modeling of myocardial surface motion applied to MRI data , 1997, Computers in Cardiology 1997.

[78]  Joan Lasenby,et al.  Modelling and Tracking Articulated Motion from Multiple Camera Views , 2000, BMVC.

[79]  P. Germain Mécanique des milieux continus , 1962 .

[80]  Patrick Bouthemy,et al.  2D fluid motion analysis from a single image , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[81]  Randal C. Nelson,et al.  Qualitative recognition of motion using temporal texture , 1992, CVGIP Image Underst..

[82]  J. Westerweel,et al.  Measurement of turbulent mixing usind PIV and LIF , 1999 .

[83]  Mubarak Shah,et al.  Motion-based recognition a survey , 1995, Image Vis. Comput..

[84]  A. Verri,et al.  Mathematical properties of the two-dimensional motion field: from singular points to motion parameters , 1989 .

[85]  A F Bobick,et al.  Movement, activity and action: the role of knowledge in the perception of motion. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[86]  Nicholas Ayache,et al.  Tracking Points on Deformable Objects Using Curvature Information , 1992, ECCV.

[87]  J. Michael Fitzpatrick,et al.  The existence of geometrical density-image transformations corresponding to object motion , 1988, Comput. Vis. Graph. Image Process..

[88]  Christoph Schnörr,et al.  Segmentation of visual motion by minimizing convex non-quadratic functionals , 1994, ICPR.

[89]  Marie-Ange Denis Brossard Modelisation multiechelle de structures bidimensionnelles fluides. Application a l'analyse du mouvement de masses nuageuses atmospheriques , 2000 .

[90]  David J. Fleet,et al.  Computing Optical Flow with Physical Models of Brightness Variation , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[91]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[92]  Charles Kervrann Modeles statistiques pour la segmentation et le suivi de structures deformables bidimensionnelles dans une sequence d'images , 1995 .

[93]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[95]  Patrick Pérez,et al.  Estimating fluid optical flow , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[96]  Patrick Bouthemy,et al.  Computation and analysis of image motion: A synopsis of current problems and methods , 1996, International Journal of Computer Vision.

[97]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[98]  Michel Barlaud,et al.  Two deterministic half-quadratic regularization algorithms for computed imaging , 1994, Proceedings of 1st International Conference on Image Processing.

[99]  Jean-Marc Odobez,et al.  Robust Multiresolution Estimation of Parametric Motion Models , 1995, J. Vis. Commun. Image Represent..

[100]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[101]  Patrick Bouthemy,et al.  Region-Based Tracking Using Affine Motion Models in Long Image Sequences , 1994 .

[102]  Rachid Deriche,et al.  Dense Disparity Map Estimation Respecting Image Discontinuities: A PDE and Scale-Space BasedApproach , 2002, MVA.

[103]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[104]  L. Vese,et al.  A Variational Method in Image Recovery , 1997 .

[105]  Gilad Adiv,et al.  Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[106]  Emiko Kudo Hawaii , 1982 .

[107]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[108]  Ian Grant,et al.  Image processing problems in fluid dynamics : selected digital procedures , 1999 .

[109]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[110]  Pascal Fua,et al.  Articulated Soft Objects for Video-based Body Modeling , 2001, ICCV.

[111]  Dominique Béréziat Détection et suivi de structures déformables en mouvement, application à la météorologie. (Detection and tracking of deformable moving structures, application to meteorology) , 1999 .

[112]  Patrick Bouthemy,et al.  Non-Parametric Motion Activity Analysis for Statistical Retrieval with Partial Query , 2004, Journal of Mathematical Imaging and Vision.

[113]  Ying Wu,et al.  Capturing natural hand articulation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[114]  MaoLin Qiu Computing optical flow based on the mass-conserving assumption , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[115]  Joachim Weickert,et al.  Reliable Estimation of Dense Optical Flow Fields with Large Displacements , 2000, International Journal of Computer Vision.

[116]  H. Görtler,et al.  Berechnung von Aufgaben der freien Turbulenz auf Grund eines neuen Näherungsansatzes . , 1942 .

[117]  Charles V. Stewart Expected performance of robust estimators near discontinuities , 1995, Proceedings of IEEE International Conference on Computer Vision.

[118]  Dimitris N. Metaxas,et al.  Shape and Nonrigid Motion Estimation Through Physics-Based Synthesis , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[119]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[120]  David J. Fleet,et al.  Design and Use of Linear Models for Image Motion Analysis , 2000, International Journal of Computer Vision.

[121]  Josiane Zerubia,et al.  A Variational Model for Image Classification and Restoration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[122]  Eric Dubois,et al.  Bayesian Estimation of Motion Vector Fields , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[123]  Patrick Pérez,et al.  A multigrid approach for hierarchical motion estimation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[124]  Ralph M. Ford Critical point detection in fluid flow images using dynamical system properties , 1997, Pattern Recognit..

[125]  Ronan Fablet Modelisation statistique non parametrique et reconnaissance du mouvement dans des sequences d'images ; application a l'indexation video , 2001 .

[126]  Dmitry B. Goldgof,et al.  Tracking Nonrigid Motion and Structure from 2D Satellite Cloud Images without Correspondences , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[127]  J. Schmetz,et al.  Operational Cloud-Motion Winds from Meteosat Infrared Images , 1993 .

[128]  R. Deriche,et al.  Regularization of orthonormal vector sets using coupled PDE's , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[129]  Larry S. Davis,et al.  Learned Models for Estimation of Rigid and Articulated Human Motion from Stationary or Moving Camera , 2004, International Journal of Computer Vision.

[130]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[131]  Patrick Pérez,et al.  Dense Estimation of Fluid Flows , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[132]  F. Browand,et al.  The mixing layer: an example of quasi two-dimensional turbulence , 1983 .

[133]  Jerry L Prince,et al.  Stochastic models for DIV-CURL optical flow methods , 1996, IEEE Signal Processing Letters.

[134]  Antonio Cenedese,et al.  Principal components analysis for PIV applications , 1999 .

[135]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[136]  Weng Kong Chan,et al.  Applications of laser techniques in fluid mechanics , 1991, Other Conferences.

[137]  Frederic Fol Leymarie,et al.  Tracking Deformable Objects in the Plane Using an Active Contour Model , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[138]  Laurent David Développements d'une technique d'analyse quantitative automatisée en écoulements tridimensionnels ; application à l'écoulement naissant autour d'un cylindre en incidence , 1996 .

[139]  William H. Press,et al.  Numerical recipes in C , 2002 .

[140]  Michael J. Black,et al.  Skin and bones: multi-layer, locally affine, optical flow and regularization with transparency , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[141]  Stefan Carlsson,et al.  Uncalibrated Motion Capture Exploiting Articulated Structure Constraints , 2004, International Journal of Computer Vision.

[142]  Patrick Bouthemy,et al.  Restoration of Noisy, Blurred, Undersampled Image Sequences Using a Parametric Motion Model , 2000 .

[143]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[144]  Michael J. Black,et al.  Parameterized Modeling and Recognition of Activities , 1999, Comput. Vis. Image Underst..

[145]  F. Dell'Acqua,et al.  Level-set based extraction and tracking of meteorological objects in satellite images , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[146]  J. Holton An introduction to dynamic meteorology , 2004 .

[147]  Joachim Weickert,et al.  A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.

[148]  J. Leese,et al.  An Automated Technique for Obtaining Cloud Motion from Geosynchronous Satellite Data Using Cross Correlation , 1971 .

[149]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[150]  F. Parmiggiani,et al.  An automated approach to the sea-ice motion estimation , 1994, Proceedings of OCEANS'94.

[151]  Pierre Hellier,et al.  Segmentation of brain 3D MR images using level sets and dense registration , 2001, Medical Image Anal..

[152]  Amir A. Amini A Scalar Function Formulation for Optical Flow , 1994, ECCV.

[153]  Jean-Paul Berroir,et al.  Motion estimation on meteorological infrared data using a total brightness invariance hypothesis , 2000, Environ. Model. Softw..

[154]  Patrick Pérez,et al.  Dense Motion Analysis in Fluid Imagery , 2002, ECCV.

[155]  Bruce A. Thomas,et al.  Image Models for 2-D Flow Visualization and Compression , 1994, CVGIP Graph. Model. Image Process..

[156]  Roberto Cipolla,et al.  Real-time tracking of highly articulated structures in the presence of noisy measurements , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[157]  Carl de Boor,et al.  Approximation Order without Quasi-Interpolants , 1993 .

[158]  Alain Herment,et al.  Detection of motion in hybrid PET/SPECT imaging based on the correlation of partial sinograms , 2001, IEEE Transactions on Medical Imaging.

[159]  John F. Foss,et al.  The measurement of vorticity in turbulent flows , 1995 .

[160]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[161]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[162]  Pierre Hellier,et al.  Hierarchical estimation of a dense deformation field for 3-D robust registration , 2001, IEEE Transactions on Medical Imaging.

[163]  Haluk Derin,et al.  Video Data Compression for Multimedia Computing , 1997 .

[164]  Jerry L. Prince,et al.  On div-curl regularization for motion estimation in 3-D volumetric imaging , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[165]  Yvan G. Leclerc,et al.  Constructing simple stable descriptions for image partitioning , 1989, International Journal of Computer Vision.

[166]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[167]  V. S. Srinivasan,et al.  Detection of singular points in fingerprint images , 1992, Pattern Recognit..

[168]  Ramprasad Polana,et al.  Temporal texture and activity recognition , 1994 .

[169]  Patrick Pérez,et al.  Extraction of Singular Points from Dense Motion Fields: An Analytic Approach , 2003, Journal of Mathematical Imaging and Vision.

[170]  José M. F. Moura,et al.  Three-dimensional modeling from two-dimensional video , 2001, IEEE Trans. Image Process..

[171]  Rachid Deriche,et al.  Diffusion tensor regularization with constraints preservation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[172]  Christoph Schnörr,et al.  Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class , 1991, International Journal of Computer Vision.

[173]  Karl Rohr,et al.  Parameter-Free Elastic Deformation Approach for 2D and 3D Registration Using Prescribed Displacements , 1999, Journal of Mathematical Imaging and Vision.

[174]  Dario Albarello,et al.  Role of kinematically induced horizontal forces in Mediterranean tectonics: insights from numerical modeling , 2000 .

[175]  James S. Duncan,et al.  Tracking myocardial deformation using phase contrast MR velocity fields: a stochastic approach , 1996, IEEE Trans. Medical Imaging.

[176]  Rachid Deriche,et al.  Image Sequence Analysis via Partial Differential Equations , 1999, Journal of Mathematical Imaging and Vision.