Building maps from maps in primary visual cortex

Neurons in the visual system respond to more complex and holistic features at each new stage of processing. Often, these features are organized into continuous maps. Could there be a fundamental link between continuous maps and functional hierarchies? Here, we review recent studies regarding V1 maps providing some of the most noteworthy advances in our understanding of how and why maps exist. In particular, we focus on the common theme that some maps are inherited from the input of parallel pathways, which are then intimately linked to the emergence of new functional properties and their corresponding maps. These results on V1 maps may prove to be a unifying framework for hierarchical representations in the visual cortex.

[1]  K. Martin Neuronal Circuits in Cat Striate Cortex , 1984 .

[2]  Zooming in on mouse vision , 2010, Nature Neuroscience.

[3]  H. Barlow Why have multiple cortical areas? , 1986, Vision Research.

[4]  J. L. Conway,et al.  Laminar organization of tree shrew dorsal lateral geniculate nucleus. , 1983, Journal of neurophysiology.

[5]  Dario L. Ringach,et al.  Link between orientation and retinotopic maps in primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[6]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[7]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[8]  G. Blasdel,et al.  Functional Retinotopy of Monkey Visual Cortex , 2001, The Journal of Neuroscience.

[9]  A. Grinvald,et al.  Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Alonso,et al.  Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex , 2011, Nature Neuroscience.

[11]  Wei Wang,et al.  Distinct Functional Organizations for Processing Different Motion Signals in V1, V2, and V4 of Macaque , 2012, The Journal of Neuroscience.

[12]  M P Stryker,et al.  Segregation of ON and OFF afferents to ferret visual cortex. , 1988, Journal of neurophysiology.

[13]  D. Coppola,et al.  Universality in the Evolution of Orientation Columns in the Visual Cortex , 2010, Science.

[14]  Amir Shmuel,et al.  The spatial pattern of response magnitude and selectivity for orientation and direction in cat visual cortex. , 2003, Cerebral cortex.

[15]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[16]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[17]  Stephen D. Van Hooser,et al.  Experience with moving visual stimuli drives the early development of cortical direction selectivity , 2008, Nature.

[18]  S. Levay,et al.  Ocular dominance and disparity coding in cat visual cortex , 1988, Visual Neuroscience.

[19]  E I Knudsen,et al.  Computational maps in the brain. , 1987, Annual review of neuroscience.

[20]  S. Levay,et al.  Segregation of on- and off-center afferents in mink visual cortex. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Hui Chen,et al.  Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[22]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[23]  Spencer L. Smith,et al.  Parallel processing of visual space by neighboring neurons in mouse visual cortex , 2010, Nature Neuroscience.

[24]  Ian Nauhaus,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[25]  K. Miller Development of orientation columns via competition between ON- and OFF-center inputs. , 1992, Neuroreport.

[26]  R B Tootell,et al.  Spatial frequency tuning of single units in macaque supragranular striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M P Stryker,et al.  On and off sublaminae in the lateral geniculate nucleus of the ferret , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  B. Payne,et al.  Modular organization of on and off responses in the cat lateral geniculate nucleus , 1989, Neuroscience.

[29]  A. Grinvald,et al.  Spatio–temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex , 1997, Nature.

[30]  Michael J. Black,et al.  Visual Orientation and Directional Selectivity through Thalamic Synchrony , 2012, The Journal of Neuroscience.

[31]  G. Mitchison Neuronal branching patterns and the economy of cortical wiring , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[32]  Anirvan S. Nandy,et al.  The Fine Structure of Shape Tuning in Area V4 , 2013, Neuron.

[33]  D. Snodderly,et al.  Direction selectivity in V1 of alert monkeys: evidence for parallel pathways for motion processing , 2007, The Journal of physiology.

[34]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[35]  P. Kara,et al.  A micro-architecture for binocular disparity and ocular dominance in visual cortex , 2009, Nature.

[36]  Matthew S. Grubb,et al.  Abnormal Functional Organization in the Dorsal Lateral Geniculate Nucleus of Mice Lacking the β2 Subunit of the Nicotinic Acetylcholine Receptor , 2003, Neuron.

[37]  Nicholas J. Priebe,et al.  Emergence of Orientation Selectivity in the Mammalian Visual Pathway , 2013, The Journal of Neuroscience.

[38]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[39]  Ian Nauhaus,et al.  Anterior-Posterior Direction Opponency in the Superficial Mouse Lateral Geniculate Nucleus , 2012, Neuron.

[40]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[41]  Hisashi Tanigawa,et al.  A Motion Direction Map in Macaque V2 , 2010, Neuron.

[42]  Nicholas V. Swindale,et al.  Cortical cartography: a two-dimensional view , 1993 .

[43]  Tomoya Saito,et al.  Effect of imbalance in activities between ON- and OFF-center LGN cells on orientation map formation , 2000, Biological Cybernetics.

[44]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  Ian Nauhaus,et al.  Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2012, Nature Neuroscience.

[46]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[47]  Chun-I Yeh,et al.  On and off domains of geniculate afferents in cat primary visual cortex , 2008, Nature Neuroscience.

[48]  S. Mcconnell,et al.  ON and OFF layers in the lateral geniculate nucleus of the mink , 1982, Nature.

[49]  K. Purpura,et al.  Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs , 1995, Vision Research.

[50]  D S Kim,et al.  Geometrical and topological relationships between multiple functional maps in cat primary visual cortex. , 1999, Neuroreport.

[51]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[52]  Dario L Ringach,et al.  Untuned Suppression Makes a Major Contribution to the Enhancement of Orientation Selectivity in Macaque V1 , 2011, The Journal of Neuroscience.

[53]  Stephen J Eglen,et al.  Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex. , 2012, Visual neuroscience.

[54]  A. Grinvald,et al.  Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18 , 1996, The Journal of Neuroscience.

[55]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996, Network.

[56]  D. Ringach,et al.  Retinal origin of orientation maps in visual cortex , 2011, Nature Neuroscience.

[57]  P. Schiller,et al.  Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. , 1978, Journal of neurophysiology.

[58]  D. Fitzpatrick,et al.  The development of direction selectivity in ferret visual cortex requires early visual experience , 2006, Nature Neuroscience.

[59]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[60]  M. Cynader,et al.  Functional organization of the cortical 17/18 border region in the cat , 2004, Experimental Brain Research.

[61]  D. B. Bowling,et al.  The distribution of on‐ and off‐centre X‐ and Y‐like cells in the A layers of the cat's lateral geniculate nucleus. , 1986, The Journal of physiology.

[62]  D. Ringach On the Origin of the Functional Architecture of the Cortex , 2007, PloS one.

[63]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[64]  F. Mechler,et al.  Neural coding of spatial phase in V1 of the macaque monkey. , 2003, Journal of neurophysiology.

[65]  Moshe Gur,et al.  Cerebral Cortex doi:10.1093/cercor/bhi003 Orientation and Direction Selectivity of Neurons in V1 of Alert Monkeys: Functional Relationships and Laminar Distributions , 2022 .

[66]  Bruce G Cumming,et al.  Ocular dominance predicts neither strength nor class of disparity selectivity with random-dot stimuli in primate V1. , 2004, Journal of neurophysiology.

[67]  M. Stryker,et al.  Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. , 1997, Journal of neurophysiology.

[68]  Andrew D Huberman,et al.  Diverse Visual Features Encoded in Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[69]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.