Coordinated Robot Navigation via Hierarchical Clustering

We introduce the use of hierarchical clustering for relaxed deterministic coordination and control of multiple robots. Traditionally, an unsupervised learning method, hierarchical clustering offers a formalism for identifying and representing spatially cohesive and segregated robot groups at different resolutions by relating the continuous space of configurations to the combinatorial space of trees. We formalize and exploit this relation, developing computationally effective reactive algorithms for navigating through the combinatorial space in concert with geometric realizations for a particular choice of the hierarchical clustering method. These constructions yield computationally effective vector field planners for both hierarchically invariant as well as transitional navigation in the configuration space. We apply these methods to the centralized coordination and control of n perfectly sensed and actuated Euclidean spheres in a d-dimensional ambient space (for arbitrary n and d). Given a desired configuration supporting a desired hierarchy, we construct a hybrid controller that is quadratic in n and algebraic in d and prove that its execution brings all but a measure zero set of initial configurations to the desired goal, with the guarantee of no collisions along the way.

[1]  Norman I. Badler,et al.  Path planning for coherent and persistent groups , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Vijay Kumar,et al.  Synthesis of Controllers to Create, Maintain, and Reconfigure Robot Formations with Communication Constraints , 2009, ISRR.

[3]  B. Dasgupta,et al.  On distances between phylogenetic trees , 1997, SODA '97.

[4]  Daniel E. Koditschek,et al.  On the Optimality of Napoleon Triangles , 2015, J. Optim. Theory Appl..

[5]  Richard A. Silverman,et al.  Elementary real and complex analysis , 1973 .

[6]  Paul G. Spirakis,et al.  Strong NP-Hardness of Moving Many Discs , 1984, Inf. Process. Lett..

[7]  Lynne E. Parker,et al.  Path Planning and Motion Coordination in Multiple Mobile Robot Teams , 2009 .

[8]  N. P. Bhatia,et al.  Dynamical Systems: Stability, Theory and Applications , 1967 .

[9]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[10]  Savvas G. Loizou,et al.  Closed form Navigation Functions based on harmonic potentials , 2011, IEEE Conference on Decision and Control and European Control Conference.

[11]  Calin Belta,et al.  Discrete abstractions for robot motion planning and control in polygonal environments , 2005, IEEE Transactions on Robotics.

[12]  C. D. Maxwell,et al.  Fine‐Scale Spatial Organization Reflects Genetic Structure in Sheep , 2008 .

[13]  Daniel E. Koditschek,et al.  Automatic assembly planning and control via potential functions , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[14]  R. Connor,et al.  A division of labour with role specialization in group–hunting bottlenose dolphins (Tursiops truncatus) off Cedar Key, Florida , 2005, Proceedings of the Royal Society B: Biological Sciences.

[15]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[16]  J. P. Lasalle The stability of dynamical systems , 1976 .

[17]  Sergio M. Savaresi,et al.  On the performance of bisecting K-means and PDDP , 2001, SDM.

[18]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[19]  L. Edelstein-Keshet,et al.  Complexity, pattern, and evolutionary trade-offs in animal aggregation. , 1999, Science.

[20]  Luiz Chaimowicz,et al.  Cohesion and segregation in swarm navigation , 2014, Robotica.

[21]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[22]  S. Levin,et al.  Dynamics of fish shoals: identifying key decision rules , 2004 .

[23]  J. Deneubourg,et al.  Cockroach aggregation based on strain odour recognition , 2004, Animal Behaviour.

[24]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[25]  Yuliy Baryshnikov,et al.  Min-type Morse theory for configuration spaces of hard spheres , 2011, ArXiv.

[26]  Luiz Chaimowicz,et al.  Hierarchical congestion control for robotic swarms , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Savvas G. Loizou,et al.  The Multi-Agent Navigation Transformation: Tuning-Free Multi-Robot Navigation , 2014, Robotics: Science and Systems.

[28]  Kenneth H.Rosen,et al.  "Discrete Mathematics and its Applications", 7th Edition, Tata Mc Graw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2011 , 2015 .

[29]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[30]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[31]  I. Couzin Collective minds , 2007, Nature.

[32]  Vijay Kumar,et al.  Trajectory Planning and Assignment in Multirobot Systems , 2012, WAFR.

[33]  A Caccone,et al.  Kin distribution of amphibian larvae in the wild , 2006, Molecular ecology.

[34]  Gaurav S. Sukhatme,et al.  Multiple Mobile Robot Systems , 2016, Springer Handbook of Robotics, 2nd Ed..

[35]  William M. Hamner,et al.  Behavior of Antarctic krill (Euphausia superba): schooling, foraging, and antipredatory behavior , 2000 .

[36]  P. Ogren Split and join of vehicle formations doing obstacle avoidance , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[37]  Calin Belta,et al.  Abstraction and control for Groups of robots , 2004, IEEE Transactions on Robotics.

[38]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[39]  R. W. Chaney Piecewise functions in nonsmooth analysis , 1990 .

[40]  Luiz Chaimowicz,et al.  Segregation of multiple heterogeneous units in a robotic swarm , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[41]  D.P. Garg,et al.  Self-sorting in a swarm of heterogeneous agents , 2008, 2008 American Control Conference.

[42]  Michael Farber Topological Complexity of Motion Planning , 2003, Discret. Comput. Geom..

[43]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[44]  P. Olver Nonlinear Systems , 2013 .

[45]  Mark de Berg,et al.  Efficient Multi-Robot Motion Planning for Unlabeled Discs in Simple Polygons , 2013, IEEE Transactions on Automation Science and Engineering.

[46]  Yunhui Liu,et al.  A new solid model HSM and its application to interference detection between moving objects , 1991, J. Field Robotics.

[47]  M. Crofoot,et al.  Cheating monkeys undermine group strength in enemy territory , 2011, Proceedings of the National Academy of Sciences.

[48]  Kenneth H. Rosen,et al.  Discrete Mathematics and its applications , 2000 .

[49]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[50]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .

[51]  N. Franks,et al.  Teams in animal societies , 2001 .

[52]  Daniel E. Koditschek,et al.  Coordinated Navigation of Multiple Independent Disk-Shaped Robots , 2014, IEEE Transactions on Robotics.

[53]  Daniel E. Koditschek Some Applications of Natural Motion Control , 1991 .

[54]  Rajashekhar C. Biradar,et al.  A survey on routing protocols in Wireless Sensor Networks , 2012, 2012 18th IEEE International Conference on Networks (ICON).

[55]  P. Gács,et al.  Algorithms , 1992 .

[56]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[57]  Vijay Kumar,et al.  A decentralized control policy for adaptive information gathering in hazardous environments , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[58]  John Guckenheimer,et al.  A Dynamical Simulation Facility for Hybrid Systems , 1993, Hybrid Systems.

[59]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[60]  S. Yau Mathematics and its applications , 2002 .

[61]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[62]  G. Odell,et al.  Swarms of Predators Exhibit "Preytaxis" if Individual Predators Use Area-Restricted Search , 1987, The American Naturalist.

[63]  S. Scholtes,et al.  Structural Analysis of Nonsmooth Mappings, Inverse Functions, and Metric Projections , 1994 .

[64]  Yunhui Liu,et al.  A practical algorithm for planning collision-free coordinated motion of multiple mobile robots , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[65]  John McPhee,et al.  A Complete and Scalable Strategy for Coordinating Multiple Robots Within Roadmaps , 2008, IEEE Transactions on Robotics.

[66]  Herbert G. Tanner,et al.  Multiagent Navigation Functions Revisited , 2012, IEEE Transactions on Robotics.

[67]  Daniel E. Koditschek,et al.  Hierarchically clustered navigation of distinct Euclidean particles , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[68]  S. Levin,et al.  Diffusion and Ecological Problems: Modern Perspectives , 2013 .

[69]  Dan Halperin,et al.  k-color multi-robot motion planning , 2012, Int. J. Robotics Res..

[70]  Malcolm S. Steinberg,et al.  Reconstruction of Tissues by Dissociated Cells , 1963 .

[71]  Jean-Louis Deneubourg,et al.  The dynamics of collective sorting robot-like ants and ant-like robots , 1991 .

[72]  G. Moore,et al.  An iterative approach from the standpoint of the additive hypothesis to the dendrogram problem posed by molecular data sets. , 1973, Journal of theoretical biology.

[73]  Daniel E. Koditschek,et al.  Toward the automatic control of robot assembly tasks via potential functions: the case of 2-D sphere assemblies , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[74]  Vijay Kumar,et al.  Concurrent assignment and planning of trajectories for large teams of interchangeable robots , 2013, 2013 IEEE International Conference on Robotics and Automation.

[75]  D. Robinson Comparison of labeled trees with valency three , 1971 .

[76]  Daniel E. Koditschek,et al.  Navigation of Distinct Euclidean Particles via Hierarchical Clustering , 2014, WAFR.

[77]  Dimos V. Dimarogonas,et al.  A feedback stabilization and collision avoidance scheme for multiple independent non-point agents, , 2006, Autom..

[78]  Naomi Ehrich Leonard,et al.  Dynamics of Decision Making in Animal Group Motion , 2009, J. Nonlinear Sci..

[79]  G. Rota The Number of Partitions of a Set , 1964 .

[80]  Luiz Chaimowicz,et al.  Aerial Shepherds: Coordination among UAVs and Swarms of Robots , 2004, DARS.

[81]  Craig Packer,et al.  Group formation stabilizes predator–prey dynamics , 2007, Nature.

[82]  G. F.,et al.  From individuals to aggregations: the interplay between behavior and physics. , 1999, Journal of theoretical biology.

[83]  E. Fadell,et al.  Geometry and Topology of Configuration Spaces , 2000 .

[84]  D. O'Brien Analysis of the internal arrangement of individuals within crustacean aggregations (Euphausiacea, Mysidacea) , 1989 .

[85]  P. Stander,et al.  Cooperative hunting in lions: the role of the individual , 1992, Behavioral Ecology and Sociobiology.

[86]  R. Ho Algebraic Topology , 2022 .

[87]  J. Mitani,et al.  Hunting Behavior of Chimpanzees at Ngogo, Kibale National Park, Uganda , 2002, International Journal of Primatology.

[88]  C. Packer,et al.  Group hunting behaviour of lions: a search for cooperation , 1991, Animal Behaviour.

[89]  Mac Schwager,et al.  Decentralized, Adaptive Coverage Control for Networked Robots , 2009, Int. J. Robotics Res..

[90]  Daniel E. Koditschek,et al.  Adaptive Techniques for Mechanical Systems , 1987 .

[91]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[92]  Boris Mirkin,et al.  Mathematical Classification and Clustering , 1996 .

[93]  Daniel E. Koditschek,et al.  Sequential Composition of Dynamically Dexterous Robot Behaviors , 1999, Int. J. Robotics Res..

[94]  Daniel E. Koditschek,et al.  Discriminative measures for comparison of phylogenetic trees , 2013, Discret. Appl. Math..

[95]  J. Bednarz,et al.  Cooperative Hunting Harris' Hawks (Parabuteo unicinctus) , 1988, Science.

[96]  Bernard Chazelle,et al.  The Convergence of Bird Flocking , 2009, JACM.

[97]  Redouan Bshary,et al.  On Group Living and Collaborative Hunting in the Yellow Saddle Goatfish (Parupeneus cyclostomus)1 , 2011 .

[98]  Daniel E. Koditschek,et al.  Anytime Hierarchical Clustering , 2014, ArXiv.