Supralinear reliability of cortical spiking from synchronous thalamic inputs

Thalamic and cortical V1 layer 4 neurons are capable of firing highly reliably and precisely upon repeated presentations of the same visual stimulus to the retina. To compare candidate causal mechanisms of spike-time reliability, a reconstructed multicompartment spiny stellate cell model with dynamic stochastic synapses was given varying synaptic inputs. We found reliability was primarily influenced by the number of synapses that fired synchronously during events (synchrony magnitude), which exhibits a supralinear relation; rather than by the rate of synchronous firing events (event rate) or synaptic strength, which exhibits comparatively more linear relations, even in the absence of voltage dependent conductances. Supralinear reliability highlights the efficacy of synchronous but weak synapses in driving output spiking, and may have implications for neural synchronicity within and between cortical areas.

[1]  T. Sejnowski,et al.  Discovering Spike Patterns in Neuronal Responses , 2004, The Journal of Neuroscience.

[2]  R. Reid,et al.  Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus , 1998, Nature.

[3]  A. Friedman,et al.  Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  J. Magee,et al.  State-Dependent Dendritic Computation in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[5]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[6]  Henry J. Alitto,et al.  Distinct Properties of Stimulus-Evoked Bursts in the Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[7]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[8]  T. Sejnowski,et al.  A model of spindle rhythmicity in the isolated thalamic reticular nucleus. , 1994, Journal of neurophysiology.

[9]  J. Alonso,et al.  Two different types of Y cells in the cat lateral geniculate nucleus. , 2003, Journal of neurophysiology.

[10]  Idan Segev,et al.  Subthreshold oscillations and resonant frequency in guinea‐pig cortical neurons: physiology and modelling. , 1995, The Journal of physiology.

[11]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[12]  T J Sejnowski,et al.  Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. , 1993, Biophysical journal.

[13]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[14]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[15]  H. Swadlow,et al.  The impact of 'bursting' thalamic impulses at a neocortical synapse , 2001, Nature Neuroscience.

[16]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[17]  C. Stevens,et al.  Facilitation and depression at single central synapses , 1995, Neuron.

[18]  Wolfgang Maass,et al.  Dynamic Stochastic Synapses as Computational Units , 1997, Neural Computation.

[19]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[20]  R. Traub,et al.  A branching dendritic model of a rodent CA3 pyramidal neurone. , 1994, The Journal of physiology.

[21]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[22]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[23]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[24]  J. Victor,et al.  Nature and precision of temporal coding in visual cortex: a metric-space analysis. , 1996, Journal of neurophysiology.

[25]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[26]  Michael J. Berry,et al.  Refractoriness and Neural Precision , 1997, The Journal of Neuroscience.

[27]  J. C. Anderson,et al.  Map of the synapses formed with the dendrites of spiny stellate neurons of cat visual cortex , 1994, The Journal of comparative neurology.

[28]  Paul H. E. Tiesinga,et al.  A New Correlation-Based Measure of Spike Timing Reliability , 2002, Neurocomputing.

[29]  C. Stevens,et al.  Heterogeneity of Release Probability, Facilitation, and Depletion at Central Synapses , 1997, Neuron.

[30]  C. Stevens,et al.  An evaluation of causes for unreliability of synaptic transmission. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[32]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[33]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[34]  R. Reid,et al.  Precise Firing Events Are Conserved across Neurons , 2002, The Journal of Neuroscience.

[35]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[36]  Bartlett W. Mel,et al.  Arithmetic of Subthreshold Synaptic Summation in a Model CA1 Pyramidal Cell , 2003, Neuron.

[37]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[38]  I. Divac Cortical circuits: Synaptic organization of the cerebral cortex. Structure, function and theory by Edward L. White, Birkäuser, 1989. Sw. fr. 88.00 (xvi + 223 pages) ISBN 3 7643 3402 9 , 1990, Trends in Neurosciences.

[39]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Y. Dan,et al.  Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus , 1998, Nature Neuroscience.

[41]  Hillel J. Chiel,et al.  Fast Calculation of Synaptic Conductances , 1993, Neural Computation.

[42]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[43]  C. Koch,et al.  Encoding of visual information by LGN bursts. , 1999, Journal of neurophysiology.

[44]  B. Connors,et al.  Efficacy of Thalamocortical and Intracortical Synaptic Connections Quanta, Innervation, and Reliability , 1999, Neuron.

[45]  H. Markram,et al.  t Synchrony Generation in Recurrent Networks with Frequency-Dependent Synapses , 2000, The Journal of Neuroscience.

[46]  Charles M. Gray,et al.  Synchronous oscillations in neuronal systems: Mechanisms and functions , 1994, Journal of Computational Neuroscience.

[47]  R. Reid,et al.  Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons , 2000, Neuron.

[48]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[49]  Jorge V. José,et al.  Inhibitory synchrony as a mechanism for attentional gain modulation , 2004, Journal of Physiology-Paris.

[50]  Pamela Reinagel,et al.  Visual Control of Burst Priming in the Anesthetized Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.