The dynamics of invariant object and action recognition in the human visual system

Humans can quickly and effortlessly recognize objects, and people and their actions from complex visual inputs. Despite the ease with which the human brain solves this problem, the underlying computational steps have remained enigmatic. What makes object and action recognition challenging are identity-preserving transformations that alter the visual appearance of objects and actions, such as changes in scale, position, and viewpoint. The majority of visual neuroscience studies examining visual recognition either use physiology recordings, which provide high spatiotemporal resolution data with limited brain coverage, or functional MRI, which provides high spatial resolution data from across the brain with limited temporal resolution. High temporal resolution data from across the brain is needed to break down and understand the computational steps underlying invariant visual recognition. In this thesis I use magenetoencephalography, machine learning, and computational modeling to study invariant visual recognition. I show that a temporal association learning rule for learning invariance in hierarchical visual systems is very robust to manipulations and visual disputations that happen during development (Chapter 2). I next show that object recognition occurs very quickly, with invariance to size and position developing in stages beginning around 100ms after stimulus onset (Chapter 3), and that action recognition occurs on a similarly fast time scale, 200 ms after video onset, with this early representation being invariant to changes in actor and viewpoint (Chapter 4). Finally, I show that the same hierarchical feedforward model can explain both the object and action recognition timing results, putting this timing data in the broader context of computer vision systems and models of the brain. This work sheds light on the computational mechanisms underlying invariant object and action recognition in the brain and demonstrates the importance of using high temporal resolution data to understand neural computations.

[1]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[2]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[3]  Radoslaw Martin Cichy,et al.  Resolving human object recognition in space and time , 2014, Nature Neuroscience.

[4]  T. Allison,et al.  Social perception from visual cues: role of the STS region , 2000, Trends in Cognitive Sciences.

[5]  Hinze Hogendoorn,et al.  Spatial coding and invariance in object-selective cortex , 2011, Cortex.

[6]  A Puce,et al.  Human neural responses elicited to observing the actions of others , 2001, Visual Neuroscience.

[7]  Peter J. Ramadge,et al.  Inter-subject alignment of human cortical anatomy using functional connectivity , 2013, NeuroImage.

[8]  Guillaume A. Rousselet,et al.  Does Filtering Preclude Us from Studying ERP Time-Courses? , 2012, Front. Psychology.

[9]  N. Kanwisher,et al.  Activation in Human MT/MST by Static Images with Implied Motion , 2000, Journal of Cognitive Neuroscience.

[10]  T. Poggio,et al.  Cognitive neuroscience: Neural mechanisms for the recognition of biological movements , 2003, Nature Reviews Neuroscience.

[11]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[12]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[13]  Riitta Salmelin,et al.  Tracking neural coding of perceptual and semantic features of concrete nouns , 2012, NeuroImage.

[14]  R. Blake,et al.  Brain Areas Involved in Perception of Biological Motion , 2000, Journal of Cognitive Neuroscience.

[15]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[16]  T D Albright,et al.  Cortical processing of visual motion. , 1993, Reviews of oculomotor research.

[17]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[18]  Joel Z. Leibo,et al.  Unsupervised learning of clutter-resistant visual representations from natural videos , 2014, ArXiv.

[19]  E. Rolls Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition , 2000, Neuron.

[20]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[21]  R. Desimone Face-Selective Cells in the Temporal Cortex of Monkeys , 1991, Journal of Cognitive Neuroscience.

[22]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[23]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  C D Tesche,et al.  Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. , 1995, Electroencephalography and clinical neurophysiology.

[25]  Joel Z. Leibo,et al.  Learning Generic Invariances in Object Recognition: Translation and Scale , 2010 .

[26]  Susan Carey,et al.  Acquiring a Single New Word , 1978 .

[27]  D I Perrett,et al.  Organization and functions of cells responsive to faces in the temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  Ethan Meyers,et al.  The neural decoding toolbox , 2013, Front. Neuroinform..

[29]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[30]  Lorenzo Rosasco,et al.  On Invariance and Selectivity in Representation Learning , 2015, ArXiv.

[31]  Elias B. Issa,et al.  Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe , 2013, The Journal of Neuroscience.

[32]  T Poggio,et al.  View-based models of 3D object recognition: invariance to imaging transformations. , 1995, Cerebral cortex.

[33]  J. Haxby,et al.  fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable Objects , 2003, Journal of Cognitive Neuroscience.

[34]  Jean Ponce,et al.  A Theoretical Analysis of Feature Pooling in Visual Recognition , 2010, ICML.

[35]  Lorenzo Rosasco,et al.  GURLS: a least squares library for supervised learning , 2013, J. Mach. Learn. Res..

[36]  R. Vogels,et al.  Functional differentiation of macaque visual temporal cortical neurons using a parametric action space. , 2009, Cerebral cortex.

[37]  R Saxe,et al.  People thinking about thinking people The role of the temporo-parietal junction in “theory of mind” , 2003, NeuroImage.

[38]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[39]  A. J. Mistlin,et al.  Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: A preliminary report , 1985, Behavioural Brain Research.

[40]  D. C. Essen,et al.  Neurons in monkey visual area V2 encode combinations of orientations , 2007, Nature Neuroscience.

[41]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[42]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[43]  N. Kanwisher,et al.  Visual attention: Insights from brain imaging , 2000, Nature Reviews Neuroscience.

[44]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[45]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[46]  Fumio Harashima,et al.  IEEE International Conference on Systems, Man, and Cybernetics , 2000 .

[47]  Joris Vangeneugden,et al.  Distinct Neural Mechanisms for Body Form and Body Motion Discriminations , 2014, The Journal of Neuroscience.

[48]  P. Sajda,et al.  Temporal characterization of the neural correlates of perceptual decision making in the human brain. , 2006, Cerebral cortex.

[49]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[50]  John P. Donoghue,et al.  Connecting cortex to machines: recent advances in brain interfaces , 2002, Nature Neuroscience.

[51]  Joel Z. Leibo,et al.  Why The Brain Separates Face Recognition From Object Recognition , 2011, NIPS.

[52]  Daniel L. K. Yamins,et al.  Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition , 2014, PLoS Comput. Biol..

[53]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[54]  E. Rolls Learning mechanisms in the temporal lobe visual cortex , 1995, Behavioural Brain Research.

[55]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[56]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[57]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  John M. Findlay,et al.  Representations of Vision: Trends and Tacit Assumptions in Vision Research , 2009 .

[59]  David A. Tovar,et al.  Representational dynamics of object vision: the first 1000 ms. , 2013, Journal of vision.

[60]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[61]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[62]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[63]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[64]  Mark C. W. van Rossum,et al.  Systematic biases in early ERP and ERF components as a result of high-pass filtering , 2012, Journal of Neuroscience Methods.

[65]  Michèle Fabre-Thorpe,et al.  The Characteristics and Limits of Rapid Visual Categorization , 2011, Front. Psychology.

[66]  B. Fischer,et al.  Human express saccades: extremely short reaction times of goal directed eye movements , 2004, Experimental Brain Research.

[67]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[68]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[69]  Shimon Ullman,et al.  Computation of pattern invariance in brain-like structures , 1999, Neural Networks.

[70]  J. Tenenbaum,et al.  Word learning as Bayesian inference. , 2007, Psychological review.

[71]  D. Perrett,et al.  Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. , 1996, Journal of neurophysiology.

[72]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[73]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[74]  Dirk B. Walther,et al.  Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain , 2009, The Journal of Neuroscience.

[75]  M. E. Spencer,et al.  A Study of Dipole Localization Accuracy for MEG and EEG using a Human Skull Phantom , 1998, NeuroImage.

[76]  Joel Z. Leibo,et al.  Learning and disrupting invariance in visual recognition with a temporal association rule , 2011, Front. Comput. Neurosci..

[77]  Tomaso Poggio,et al.  Unsupervised learning of invariant representations with low sample complexity: the magic of sensory cortex or a new framework for machine learning? , 2013, 1311.4158.

[78]  R. Ratcliff,et al.  Neural Representation of Task Difficulty and Decision Making during Perceptual Categorization: A Timing Diagram , 2006, The Journal of Neuroscience.

[79]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[80]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[81]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[82]  Jack L. Gallant,et al.  A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain , 2012, Neuron.

[83]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[84]  J. Haynes Brain Reading: Decoding Mental States From Brain Activity In Humans , 2011 .

[85]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[86]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[87]  David J Heeger,et al.  Linking visual perception with human brain activity , 1999, Current Opinion in Neurobiology.

[88]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[89]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V4 , 2012, Neuron.

[90]  C. Frith,et al.  Functional imaging of ‘theory of mind’ , 2003, Trends in Cognitive Sciences.

[91]  Eero P. Simoncelli,et al.  A functional and perceptual signature of the second visual area in primates , 2013, Nature Neuroscience.

[92]  J. Hegdé,et al.  Selectivity for Complex Shapes in Primate Visual Area V2 , 2000, The Journal of Neuroscience.

[93]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[94]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[95]  P. Downing,et al.  The lateral occipitotemporal cortex in action , 2015, Trends in Cognitive Sciences.

[96]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[97]  M. Lappe,et al.  Visual areas involved in the perception of human movement from dynamic form analysis , 2005, Neuroreport.

[98]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[99]  Simon J. Thorpe,et al.  Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited , 2006, Vision Research.

[100]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[101]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[102]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[103]  B. Wandell Computational neuroimaging of human visual cortex. , 1999, Annual review of neuroscience.

[104]  C. Busettini,et al.  Radial optic flow induces vergence eye movements with ultra-short latencies , 1997, Nature.

[105]  J. Gallant,et al.  Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies , 2011, Current Biology.

[106]  Mary C. Potter,et al.  Recognition and Memory for Briefly Presented Scenes , 2012, Front. Psychology.

[107]  Sami Romdhani,et al.  Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[108]  Joel Z. Leibo,et al.  The dynamics of invariant object recognition in the human visual system. , 2014, Journal of neurophysiology.

[109]  David J. Freedman,et al.  Dynamic population coding of category information in inferior temporal and prefrontal cortex. , 2008, Journal of neurophysiology.

[110]  K. Grill-Spector,et al.  The functional architecture of the ventral temporal cortex and its role in categorization , 2014, Nature Reviews Neuroscience.

[111]  David D. Cox,et al.  'Breaking' position-invariant object recognition , 2005, Nature Neuroscience.

[112]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[113]  Thomas Serre,et al.  A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex , 2005 .

[114]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[115]  T. Allison,et al.  Electrophysiological Studies of Face Perception in Humans , 1996, Journal of Cognitive Neuroscience.

[116]  Tomaso Poggio,et al.  CNS: a GPU-based framework for simulating cortically-organized networks , 2010 .

[117]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[118]  H. Bülthoff,et al.  Effects of temporal association on recognition memory , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Tom M. Mitchell,et al.  Machine learning classifiers and fMRI: A tutorial overview , 2009, NeuroImage.

[120]  Leslie G. Ungerleider,et al.  Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys , 1982, Behavioural Brain Research.

[121]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[122]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[123]  Doris Y. Tsao,et al.  Functional Compartmentalization and Viewpoint Generalization Within the Macaque Face-Processing System , 2010, Science.

[124]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[125]  N. Kanwisher,et al.  The Human Body , 2001 .

[126]  Ellen M. Markman,et al.  Categorization and Naming in Children: Problems of Induction , 1989 .

[127]  Karin Ackermann,et al.  Progress In Neurobiology , 2016 .

[128]  Shimon Ullman,et al.  Class-Based Feature Matching Across Unrestricted Transformations , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[129]  J. Hegdé,et al.  A comparative study of shape representation in macaque visual areas v2 and v4. , 2007, Cerebral cortex.

[130]  Christoph Kayser,et al.  Learning the invariance properties of complex cells from their responses to natural stimuli , 2002, The European journal of neuroscience.

[131]  Fei-Fei Li,et al.  Deep visual-semantic alignments for generating image descriptions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[132]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[133]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[134]  Shimon Ullman,et al.  Image interpretation by a single bottom-up top-down cycle , 2008, Proceedings of the National Academy of Sciences.

[135]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[136]  Laurenz Wiskott,et al.  How Does Our Visual System Achieve Shift and Size Invariance , 2004 .

[137]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[138]  G. Kreiman,et al.  Timing, Timing, Timing: Fast Decoding of Object Information from Intracranial Field Potentials in Human Visual Cortex , 2009, Neuron.

[139]  Geoffrey E. Hinton,et al.  Learning sets of filters using back-propagation , 1987 .

[140]  D. Sheinberg,et al.  Temporal Cortex Neurons Encode Articulated Actions as Slow Sequences of Integrated Poses , 2010, The Journal of Neuroscience.

[141]  Tomaso Poggio,et al.  Representation Learning in Sensory Cortex: A Theory , 2014, IEEE Access.

[142]  J. DiCarlo,et al.  Unsupervised Natural Visual Experience Rapidly Reshapes Size-Invariant Object Representation in Inferior Temporal Cortex , 2010, Neuron.

[143]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[144]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[145]  Paul Sajda,et al.  Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the EEG , 2009, Proceedings of the National Academy of Sciences.

[146]  Patrick Suppes,et al.  Single-Trial Classification of MEG Recordings , 2007, IEEE Transactions on Biomedical Engineering.

[147]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[148]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[149]  S. Gerber,et al.  Unsupervised Natural Experience Rapidly Alters Invariant Object Representation in Visual Cortex , 2008 .

[150]  J. Maunsell,et al.  Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. , 2003, Journal of neurophysiology.

[151]  Thomas Serre,et al.  A Biologically Inspired System for Action Recognition , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[152]  Thomas Serre,et al.  Learning complex cell invariance from natural videos: A plausibility proof , 2007 .

[153]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[154]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[155]  David D. Cox,et al.  Untangling invariant object recognition , 2007, Trends in Cognitive Sciences.

[156]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[157]  Joseph R. Madsen,et al.  Spatiotemporal Dynamics Underlying Object Completion in Human Ventral Visual Cortex , 2014, Neuron.

[158]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[159]  Kunihiko Fukushima,et al.  Neocognitron: A hierarchical neural network capable of visual pattern recognition , 1988, Neural Networks.

[160]  Thomas Serre,et al.  Object decoding with attention in inferior temporal cortex , 2011, Proceedings of the National Academy of Sciences.

[161]  Daniel Baldauf,et al.  Neural mechanisms of object-based attention , 2014 .

[162]  Brad Wyble,et al.  Detecting meaning in RSVP at 13 ms per picture , 2013, Attention, perception & psychophysics.

[163]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[164]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[165]  Nicole C. Rust,et al.  Selectivity and Tolerance (“Invariance”) Both Increase as Visual Information Propagates from Cortical Area V4 to IT , 2010, The Journal of Neuroscience.

[166]  M. Potter Short-term conceptual memory for pictures. , 1976, Journal of experimental psychology. Human learning and memory.

[167]  John C. Mosher,et al.  Anatomically and Functionally Constrained Minimum-Norm Estimates , 2010 .

[168]  Edmund T. Rolls,et al.  Learning invariant object recognition in the visual system with continuous transformations , 2006, Biological Cybernetics.

[169]  HighWire Press The journal of neuroscience : the official journal of the Society for Neuroscience. , 1981 .

[170]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[171]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[172]  A. Cowey,et al.  Sensitivity to eye gaze in prosopagnosic patients and monkeys with superior temporal sulcus ablation , 1990, Neuropsychologia.

[173]  Emery N. Brown,et al.  A spatiotemporal dynamic distributed solution to the MEG inverse problem , 2011, NeuroImage.

[174]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[175]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[176]  Quoc V. Le,et al.  Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis , 2011, CVPR 2011.

[177]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[178]  John A. Pyles,et al.  fMR-Adaptation Reveals Invariant Coding of Biological Motion on the Human STS , 2009, Front. Hum. Neurosci..

[179]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[180]  P. Sinha,et al.  Functional neuroanatomy of biological motion perception in humans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[181]  P. H. Schiller,et al.  The role of the primate extrastriate area V4 in vision. , 1991, Science.