Fundamental limits in sensitivity minimization: multiple-input-multiple-output (MIMO) plants

This paper provides a bridge between the H/sub /spl infin// literature and that of fundamental limits. By applying operator theoretic tools developed for the standard frequency domain, model-matching approach to sensitivity minimization, explicit closed form expressions are given for tight bounds on the H/sub /spl infin// norm of weighted sensitivity functions for output feedback control of linear multivariable systems.

[1]  Graham C. Goodwin,et al.  Fundamental limitations due to jomega-axis zeros in SISO systems , 1999, Autom..

[2]  Pramod P. Khargonekar,et al.  Four-block problem: stable plants and rational weights , 1989 .

[3]  D. Sarason Generalized interpolation in , 1967 .

[4]  Edward J. Davison,et al.  Performance limitations of non-minimum phase systems in the servomechanism problem, , 1993, Autom..

[5]  G. Zames,et al.  Feedback, minimax sensitivity, and optimal robustness , 1983 .

[6]  Jie Chen,et al.  Logarithmic integrals, interpolation bounds, and performance limitations in MIMO feedback systems , 2000, IEEE Trans. Autom. Control..

[7]  M. Vidyasagar Control System Synthesis : A Factorization Approach , 1988 .

[8]  Allen Tannenbaum Modified Nevanlinna-Pick interpolation and feedback stabilization of linear plants with uncertainty in the gain factor , 1982 .

[9]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[10]  Li Qiu,et al.  Limitations on maximal tracking accuracy , 2000, IEEE Trans. Autom. Control..

[11]  Brett Ninness,et al.  Orthonormal Basis Functions for Continuous-Time Systems and Lp Convergence , 1999, Math. Control. Signals Syst..

[12]  Li Qiu,et al.  Limitations on maximal tracking accuracy. 2. Tracking sinusoidal and ramp signals , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[13]  P. Khargonekar,et al.  Non-Euclidian metrics and the robust stabilization of systems with parameter uncertainty , 1985 .

[14]  K. Glover,et al.  Robust stabilization of normalized coprime factor plant descriptions with H/sub infinity /-bounded uncertainty , 1989 .

[15]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[16]  Hong Yang,et al.  Optimal mixed sensitivity for SISO-distributed plants , 1994, IEEE Trans. Autom. Control..

[17]  Tzyh Jong Tarn,et al.  Semiglobal L2 performance bounds for disturbance attenuation in nonlinear systems , 1999, IEEE Trans. Autom. Control..

[18]  G. Zames,et al.  H ∞ -optimal feedback controllers for linear multivariable systems , 1984 .

[19]  Jie Chen Intrinsic performance limits of linear time-invariant feedback control , 1999 .

[20]  J. Freudenberg,et al.  Frequency Domain Properties of Scalar and Multivariable Feedback Systems , 1988 .

[21]  K. Havre,et al.  Limitations imposed by RHP zeros/poles in multivariable systems , 1997, 1997 European Control Conference (ECC).

[22]  David Q. Mayne,et al.  Feedback limitations in nonlinear systems: from Bode integrals to cheap control , 1999, IEEE Trans. Autom. Control..

[23]  C. Carathéodory Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .

[24]  Pramod Khargonekar,et al.  Weighted sensitivity minimization for delay systems , 1986, 1986 25th IEEE Conference on Decision and Control.

[25]  Graham C. Goodwin,et al.  Integral constraints on sensitivity vectors for multivariable linear systems , 1996, Autom..

[26]  Toshiharu Sugie,et al.  H∞ control problem with jω-axis zeros , 1992, Autom..

[27]  Bor-Chin Chang,et al.  Optimal disturbance reduction in linear multivariable systems , 1983 .

[28]  David J. N. Limebeer,et al.  An analysis of the pole-zero cancellations in H ∞ -optimal control problems of the first kind , 1987 .

[29]  John B. Moore A note on a singular optimal control problem , 1969, Autom..

[30]  G. Goodwin,et al.  Cost of cheap decoupled control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[31]  Rick H. Middleton,et al.  Trade-offs in linear control system design , 1991, Autom..

[32]  Allen Tannenbaum,et al.  A skew Toeplitz approach to the H ∞ optimal control of multivariable distributed systems , 1990 .

[33]  S. Skogestad,et al.  Effect of RHP zeros and poles on the sensitivity functions in multivariable systems , 1998 .