Sensor based motion planning: the hierarchical generalized Voronoi graph

Sensor based motion planning incorporates sensor information reflecting the state of a robot's environment into its planning process, whereas traditional approaches assume complete prior knowledge of the robot's environment. Recent research has focused on the development and incremental construction of the hierarchical generalized Voronoi graph (HGVG), which is a concise representation of a robot's environment. The HGVG is advantageous in that it lends itself to sensor based construction in a rigorous and provably correct manner. With this approach, a robot can enter an unknown environment, incrementally construct the HGVG, and then use the HGVG for future excursions in the environment. Simulations and experiments validate this approach.

[1]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[2]  Gregory S. Chirikjian,et al.  Theory and applications of hyper-redundant robotic manipulators , 1992 .

[3]  Peter Forbes Rowat,et al.  Representing spatial experience and solving spatial problems in a simulated robot environment , 1979 .

[4]  David J. Kriegman,et al.  Vision-based motion planning and exploration algorithms for mobile robots , 1995, IEEE Trans. Robotics Autom..

[5]  S. Sitharama Iyengar,et al.  Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms , 1993 .

[6]  S. Sitharama Iyengar,et al.  A 'retraction' method for learned navigation in unknown terrains for a circular robot , 1991, IEEE Trans. Robotics Autom..

[7]  E. Gat,et al.  Robot navigation by conditional sequencing , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[8]  V. Klee On the complexity ofd- dimensional Voronoi diagrams , 1979 .

[9]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..

[10]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[11]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[12]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[13]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[14]  J. T. Schwartz,et al.  Advances in robotics: Algorithmic and geometric aspects of robotics. Volume 1 , 1986 .

[15]  Gregory S. Chirikjian,et al.  A modal approach to hyper-redundant manipulator kinematics , 1994, IEEE Trans. Robotics Autom..

[16]  Gregory S. Chirikjian,et al.  Kinematically optimal hyper-redundant manipulator configurations , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[17]  Gregory S. Chirikjian,et al.  The kinematics of hyper-redundant robot locomotion , 1995, IEEE Trans. Robotics Autom..

[18]  Erann Gat ALFA: a language for programming reactive robotic control systems , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[19]  Paulo Roberto Oliveira,et al.  Descent algorithm for a class of convex nondifferentiable functions , 1992 .

[20]  John Canny,et al.  Simplified Voronoi diagrams , 1988, Discret. Comput. Geom..

[21]  Howie Choset,et al.  Sensor Based Planing, Part I: The Generalized Voronoi Graph , 1995, ICRA.

[22]  Howie Choset,et al.  Sensor based planning and nonsmooth analysis , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[23]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[24]  Vladimir J. Lumelsky,et al.  Motion Planning With Uncertainty For Highly Redundant Kinematic Structures I. "Free Snake" Motion , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[26]  J. Marsden,et al.  Elementary classical analysis , 1974 .

[27]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[28]  H. Keller Lectures on Numerical Methods in Bifurcation Problems , 1988 .

[29]  Howie Choset,et al.  Sensor Based Planing, Part II: Incremental COnstruction of the Generalized Voronoi Graph , 1995, ICRA.

[30]  Yoram Koren,et al.  Real-time obstacle avoidance for fast mobile robots in cluttered environments , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[31]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[32]  Howie Choset,et al.  Sensor based planning for a planar rod robot , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[33]  Van-Duc Nguyen,et al.  Constructing Force- Closure Grasps , 1988, Int. J. Robotics Res..

[34]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.