Long-term memory prepares neural activity for perception

Past experience provides a rich source of predictive information about the world that could be used to guide and optimize ongoing perception. However, the neural mechanisms that integrate information coded in long-term memory (LTM) with ongoing perceptual processing remain unknown. Here, we explore how the contents of LTM optimize perception by modulating anticipatory brain states. By using a paradigm that integrates LTM and attentional orienting, we first demonstrate that the contents of LTM sharpen perceptual sensitivity for targets presented at memory-predicted spatial locations. Next, we examine oscillations in EEG to show that memory-guided attention is associated with spatially specific desynchronization of alpha-band activity over visual cortex. Additionally, we use functional MRI to confirm that target-predictive spatial information stored in LTM triggers spatiotopic modulation of preparatory activity in extrastriate visual cortex. Finally, functional MRI results also implicate an integrated cortical network, including the hippocampus and a dorsal frontoparietal circuit, as a likely candidate for organizing preparatory states in visual cortex according to the contents of LTM.

[1]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[2]  L. Standing Learning 10,000 pictures. , 1973, The Quarterly journal of experimental psychology.

[3]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[4]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[5]  R. Desimone,et al.  Neural mechanisms for visual memory and their role in attention. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[7]  Richard S. J. Frackowiak,et al.  Functional localization of the system for visuospatial attention using positron emission tomography. , 1997, Brain : a journal of neurology.

[8]  G. V. Simpson,et al.  Parieto‐occipital ∼1 0Hz activity reflects anticipatory state of visual attention mechanisms , 1998 .

[9]  M. Chun,et al.  Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention , 1998, Cognitive Psychology.

[10]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[11]  Joel R. Meyer,et al.  A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. , 1999, Brain : a journal of neurology.

[12]  Karl J. Friston,et al.  The physiological basis of attentional modulation in extrastriate visual areas , 1999, Nature Neuroscience.

[13]  M. Corbetta,et al.  Erratum to “Translocation machinery for synthesis of integral membrane and secretory proteins in dendritic spines” , 2000, Nature Neuroscience.

[14]  D. Heeger,et al.  Activity in primary visual cortex predicts performance in a visual detection task , 2000, Nature Neuroscience.

[15]  G. V. Simpson,et al.  Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex , 2000, The Journal of Neuroscience.

[16]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[17]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[18]  M. Chun,et al.  Contextual cueing of visual attention , 2022 .

[19]  Karl J. Friston,et al.  Modelling Geometric Deformations in Epi Time Series , 2022 .

[20]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[21]  Darren R Gitelman,et al.  ILAB: A program for postexperimental eye movement analysis , 2002, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[22]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[23]  Mark S. Cohen,et al.  Simultaneous EEG and fMRI of the alpha rhythm , 2002, Neuroreport.

[24]  Andreas Kleinschmidt,et al.  EEG-correlated fMRI of human alpha activity , 2003, NeuroImage.

[25]  S. Yantis,et al.  Cortical mechanisms of space-based and object-based attentional control , 2003, Current Opinion in Neurobiology.

[26]  Anna Christina Nobre Probing the Flexibility of Attentional Orienting in the Human Brain. , 2004 .

[27]  P. Maquet,et al.  Orienting Attention to Locations in Perceptual Versus Mental Representations , 2004, Journal of Cognitive Neuroscience.

[28]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[29]  R. Deichmann,et al.  Concurrent TMS-fMRI and Psychophysics Reveal Frontal Influences on Human Retinotopic Visual Cortex , 2006, Current Biology.

[30]  Á. Pascual-Leone,et al.  α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection , 2006, The Journal of Neuroscience.

[31]  John J. Foxe,et al.  Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. , 2006, Journal of neurophysiology.

[32]  A. Nobre,et al.  Orienting Attention Based on Long-Term Memory Experience , 2006, Neuron.

[33]  M. Bar,et al.  Top-down facilitation of visual object recognition: object-based and context-based contributions. , 2006, Progress in brain research.

[34]  M. Chun,et al.  Interactions between attention and memory , 2007, Current Opinion in Neurobiology.

[35]  Robert T Knight,et al.  An information-theoretical approach to contextual processing in the human brain: evidence from prefrontal lesions. , 2007, Cerebral cortex.

[36]  David J Heeger,et al.  Neural correlates of sustained spatial attention in human early visual cortex. , 2007, Journal of neurophysiology.

[37]  Pejman Sehatpour,et al.  A human intracranial study of long-range oscillatory coherence across a frontal–occipital–hippocampal brain network during visual object processing , 2008, Proceedings of the National Academy of Sciences.

[38]  Morris Moscovitch,et al.  Episodic memory for spatial context biases spatial attention , 2008, Experimental Brain Research.

[39]  J. Schoffelen,et al.  Prestimulus Oscillatory Activity in the Alpha Band Predicts Visual Discrimination Ability , 2008, The Journal of Neuroscience.

[40]  Mark W. Becker,et al.  Guidance of attention to objects and locations by long-term memory of natural scenes. , 2008, Journal of experimental psychology. Learning, memory, and cognition.

[41]  Melina A. Kunar,et al.  Time to guide: Evidence for delayed attentional guidance in contextual cueing , 2008, Visual cognition.

[42]  M. Moscovitch,et al.  Top-down and bottom-up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval , 2008, Neuropsychologia.

[43]  Aude Oliva,et al.  Visual long-term memory has a massive storage capacity for object details , 2008, Proceedings of the National Academy of Sciences.

[44]  M. Moscovitch,et al.  The parietal cortex and episodic memory: an attentional account , 2008, Nature Reviews Neuroscience.

[45]  W. K. Simmons,et al.  Circular analysis in systems neuroscience: the dangers of double dipping , 2009, Nature Neuroscience.

[46]  Christoph M. Michel,et al.  A bias for posterior α-band power suppression versus enhancement during shifting versus maintenance of spatial attention , 2009, NeuroImage.

[47]  Moshe Bar,et al.  The proactive brain: memory for predictions , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[48]  John Duncan,et al.  Shape-specific preparatory activity mediates attention to targets in human visual cortex , 2009, Proceedings of the National Academy of Sciences.

[49]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[50]  J. Gross,et al.  On the Role of Prestimulus Alpha Rhythms over Occipito-Parietal Areas in Visual Input Regulation: Correlation or Causation? , 2010, The Journal of Neuroscience.

[51]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[52]  Holly Bridge,et al.  Neural modulation by binocular disparity greatest in human dorsal visual stream. , 2010, Journal of neurophysiology.

[53]  A. Nobre,et al.  Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations , 2011, Journal of neurophysiology.

[54]  Julie D. Golomb,et al.  A taxonomy of external and internal attention. , 2011, Annual review of psychology.