Visual teach and repeat for long-range rover autonomy

This paper describes a system built to enable long-range rover autonomy using a stereo camera as the only sensor. During a learning phase, the system builds a manifold map of overlapping submaps as it is piloted along a route. The map is then used for localization as the rover repeats the route autonomously. The use of local submaps allows the rover to faithfully repeat long routes without the need for an accurate global reconstruction. Path following over nonplanar terrain is handled by performing localization in three dimensions and then projecting this down to a local ground plane associated with the current submap to perform path tracking. We have tested this system in an urban area and in a planetary analog setting in the Canadian High Arctic. More than 32 km was covered—99.6p autonomously—with autonomous runs ranging from 45 m to 3.2 km, all without the use of the global positioning system (GPS). Because it enables long-range autonomous behavior in a single command cycle, visual teach and repeat is well suited to planetary applications, such as Mars sample return, in which no GPS is available. © 2010 Wiley Periodicals, Inc.

[1]  Sinisa Segvic,et al.  A mapping and localization framework for scalable appearance-based navigation , 2009, Comput. Vis. Image Underst..

[2]  Luc Van Gool,et al.  Omnidirectional Vision Based Topological Navigation , 2007, International Journal of Computer Vision.

[3]  Robert C. Bolles,et al.  Mapping, navigation, and learning for off‐road traversal , 2009, J. Field Robotics.

[4]  Paul Newman,et al.  Navigating, Recognizing and Describing Urban Spaces With Vision and Lasers , 2009, Int. J. Robotics Res..

[5]  Luc Van Gool,et al.  Feature based omnidirectional sparse visual path following , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Eric T. Baumgartner,et al.  An autonomous vision-based mobile robot , 1994, IEEE Trans. Autom. Control..

[7]  Tom Drummond,et al.  Unified Loop Closing and Recovery for Real Time Monocular SLAM , 2008, BMVC.

[8]  Luc Van Gool,et al.  Omnidirectional sparse visual path following with occlusion-robust feature tracking , 2005 .

[9]  Shin'ichi Yuta,et al.  Vision based navigation for mobile robots in indoor environment by teaching and playing-back scheme , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[10]  Francisco Bonin-Font,et al.  Visual Navigation for Mobile Robots: A Survey , 2008, J. Intell. Robotic Syst..

[11]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[12]  Lindsay Kleeman,et al.  Robust Appearance Based Visual Route Following for Navigation in Large-scale Outdoor Environments , 2009, Int. J. Robotics Res..

[13]  William Whittaker,et al.  First experiment in sun-synchronous exploration , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[14]  Philippe Martinet,et al.  Indoor Navigation of a Wheeled Mobile Robot along Visual Routes , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[15]  Larry H. Matthies,et al.  Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission , 2004, ISER.

[16]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[17]  Gaurav S. Sukhatme,et al.  Multirobot Simultaneous Localization and Mapping Using Manifold Representations , 2006, Proceedings of the IEEE.

[18]  Sinisa Segvic,et al.  Outdoor visual path following experiments , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Ian D. Reid,et al.  Adaptive relative bundle adjustment , 2009, Robotics: Science and Systems.

[20]  Joshua A. Marshall,et al.  Autonomous underground tramming for center-articulated vehicles , 2008 .

[21]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[22]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[23]  William Whittaker,et al.  Sun-Synchronous Robotic Exploration: Technical Description and Field Experimentation , 2005, Int. J. Robotics Res..

[24]  S. Shafer,et al.  Dynamic stereo vision , 1989 .

[25]  Kurt Konolige,et al.  Large-Scale Visual Odometry for Rough Terrain , 2007, ISRR.

[26]  Michel Dhome,et al.  Monocular Vision for Mobile Robot Localization and Autonomous Navigation , 2007, International Journal of Computer Vision.

[27]  Luis Payá,et al.  Appearance-Based Multi-robot Following Routes Using Incremental PCA , 2007, KES.

[28]  Antonis A. Argyros,et al.  Robot Homing by Exploiting Panoramic Vision , 2005, Auton. Robots.

[29]  Antonis A. Argyros,et al.  Exploiting Panoramic Vision for Bearing-Only Robot Homing , 2006 .

[30]  Yoshiaki Shirai,et al.  Autonomous visual navigation of a mobile robot using a human-guided experience , 2002, Robotics Auton. Syst..

[31]  Rodney A. Brooks,et al.  Visual map making for a mobile robot , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[32]  Zhichao Chen,et al.  Qualitative vision-based mobile robot navigation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[33]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[34]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[35]  Trevor Darrell,et al.  Using Multiple-Hypothesis Disparity Maps and Image Velocity for 3-D Motion Estimation , 2004, International Journal of Computer Vision.

[36]  Peter Corke,et al.  An Introduction to Inertial and Visual Sensing , 2007, Int. J. Robotics Res..

[37]  John J. Leonard,et al.  Explore and return: experimental validation of real-time concurrent mapping and localization , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[38]  James L. Crowley,et al.  Appearance based process for visual navigation , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[39]  Ian D. Reid,et al.  A Constant-Time Efficient Stereo SLAM System , 2009, BMVC.

[40]  Paul C. H. Lee,et al.  Haughton-Mars Project: 10 Years of Science Operations and Exploration Systems Development at a Moon/Mars Analog Site on Devon Island, High Arctic , 2007 .

[41]  Ben J. A. Kröse,et al.  Navigation using an appearance based topological map , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[42]  Gordon Wyeth,et al.  Persistent Navigation and Mapping using a Biologically Inspired SLAM System , 2010, Int. J. Robotics Res..

[43]  Philippe Martinet,et al.  Indoor navigation of a non-holonomic mobile robot using a visual memory , 2008, Auton. Robots.

[44]  Ian D. Reid,et al.  Article in Press Robotics and Autonomous Systems ( ) – Robotics and Autonomous Systems a Comparison of Loop Closing Techniques in Monocular Slam , 2022 .

[45]  Paul Newman,et al.  FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance , 2008, Int. J. Robotics Res..

[46]  Frank Dellaert,et al.  Flow separation for fast and robust stereo odometry , 2009, 2009 IEEE International Conference on Robotics and Automation.

[47]  Kurt Konolige,et al.  Towards lifelong visual maps , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  Michael Bosse,et al.  Simultaneous Localization and Map Building in Large-Scale Cyclic Environments Using the Atlas Framework , 2004, Int. J. Robotics Res..

[49]  Robert C. Bolles,et al.  Mapping, navigation, and learning for off-road traversal , 2009 .

[50]  David Nistér,et al.  Preemptive RANSAC for live structure and motion estimation , 2005, Machine Vision and Applications.

[51]  Kurt Konolige,et al.  FrameSLAM: From Bundle Adjustment to Real-Time Visual Mapping , 2008, IEEE Transactions on Robotics.

[52]  Masayuki Inaba,et al.  Visual navigation using view-sequenced route representation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[53]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..