Building a heading signal from anatomically defined neuron types in the Drosophila central complex

A network of a few hundred neurons in the Drosophila central complex carries an estimate of the fly's heading in the world, akin to the mammalian head-direction system. Here we describe how anatomically defined neuronal classes in this network are poised to implement specific sub-processes for building and updating this population-level heading signal. The computations we describe in the fly central complex strongly resemble those posited to exist in the mammalian brain, in computational models for building head-direction signals. By linking circuit anatomy to navigational physiology, the Drosophila central complex should provide a detailed example of how a heading signal is built.

[1]  Jonathan Green,et al.  Walking Drosophila aim to maintain a neural heading estimate at an internal goal angle , 2018, bioRxiv.

[2]  Alex J. Cope,et al.  A computational model of the integration of landmarks and motion in the insect central complex , 2017, PloS one.

[3]  Edvard I. Moser,et al.  Speed cells in the medial entorhinal cortex , 2015, Nature.

[4]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[5]  J. Taube,et al.  Firing Properties of Head Direction Cells in the Rat Anterior Thalamic Nucleus: Dependence on Vestibular Input , 1997, The Journal of Neuroscience.

[6]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[7]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[8]  Peter T Weir,et al.  Flying Drosophila melanogaster maintain arbitrary but stable headings relative to the angle of polarized light , 2018, Journal of Experimental Biology.

[9]  Roland Strauss,et al.  Cell types and coincident synapses in the ellipsoid body of Drosophila , 2014, The European journal of neuroscience.

[10]  S. Mizumori,et al.  Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[12]  Eric T. Trautman,et al.  A complete electron microscopy volume of the brain of adult Drosophila melanogaster , 2017 .

[13]  Hokto Kazama,et al.  Parallel encoding of recent visual experience and self-motion during navigation in Drosophila , 2017, Nature Neuroscience.

[14]  A David Redishyx,et al.  A coupled attractor model of the rodent head direction system , 1996 .

[15]  B. McNaughton,et al.  Dead Reckoning, Landmark Learning, and the Sense of Direction: A Neurophysiological and Computational Hypothesis , 1991, Journal of Cognitive Neuroscience.

[16]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[17]  G. Rubin,et al.  Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits , 2014, The Journal of comparative neurology.

[18]  Bruce L. McNaughton,et al.  A Model of the Neural Basis of the Rat's Sense of Direction , 1994, NIPS.

[19]  T. Collett,et al.  Spatial Memory in Insect Navigation , 2013, Current Biology.

[20]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Aike Guo,et al.  Two Clusters of GABAergic Ellipsoid Body Neurons Modulate Olfactory Labile Memory in Drosophila , 2013, The Journal of Neuroscience.

[22]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[23]  A. Mamiya,et al.  Neural Coding of Leg Proprioception in Drosophila , 2018, Neuron.

[24]  Benjamin L. de Bivort,et al.  Ring Attractor Dynamics Emerge from a Spiking Model of the Entire Protocerebral Bridge , 2016, bioRxiv.

[25]  Johannes D. Seelig,et al.  Angular velocity integration in a fly heading circuit , 2017, eLife.

[26]  Nachum Ulanovsky,et al.  Vectorial representation of spatial goals in the hippocampus of bats , 2017, Science.

[27]  U. Homberg,et al.  Organization and functional roles of the central complex in the insect brain. , 2014, Annual review of entomology.

[28]  Ann-Shyn Chiang,et al.  A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. , 2013, Cell reports.

[29]  Jeffrey S. Taube,et al.  The Head-Direction Signal Plays a Functional Role as a Neural Compass during Navigation , 2017, Current Biology.

[30]  B. Webb,et al.  An Anatomically Constrained Model for Path Integration in the Bee Brain , 2017, Current Biology.

[31]  Stanley Heinze,et al.  Central neural coding of sky polarization in insects , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  H. T. Blair,et al.  Neural network modeling of the hippocampal formation spatial signals and their possible role in navigation: A modular approach , 1996, Hippocampus.

[33]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[34]  Michael H. Dickinson,et al.  Sun navigation requires compass neurons in Drosophila , 2018 .

[35]  Aurel A. Lazar,et al.  Generating Executable Models of the Drosophila Central Complex , 2017, Front. Behav. Neurosci..

[36]  Uwe Homberg,et al.  Evolution of the central complex in the arthropod brain with respect to the visual system. , 2008, Arthropod structure & development.

[37]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[38]  J. Taube,et al.  Firing Properties of Rat Lateral Mammillary Single Units: Head Direction, Head Pitch, and Angular Head Velocity , 1998, The Journal of Neuroscience.

[39]  Vivek Jayaraman,et al.  Building a functional connectome of the Drosophila central complex , 2018, eLife.

[40]  Rachel I. Wilson,et al.  Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system , 2013, Proceedings of the National Academy of Sciences.

[41]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[42]  Aljoscha Nern,et al.  Neural signatures of dynamic stimulus selection in Drosophila , 2017, Nature Neuroscience.

[43]  Michael H Dickinson,et al.  Death Valley, Drosophila, and the Devonian toolkit. , 2014, Annual review of entomology.

[44]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[45]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[46]  Michael H. Dickinson,et al.  Idiothetic Path Integration in the Fruit Fly Drosophila melanogaster , 2017, Current Biology.

[47]  H. T. Blair,et al.  Role of the Lateral Mammillary Nucleus in the Rat Head Direction Circuit A Combined Single Unit Recording and Lesion Study , 1998, Neuron.

[48]  K. Zhang,et al.  Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  V. Jayaraman,et al.  Ring attractor dynamics in the Drosophila central brain , 2017, Science.

[51]  Stanley Heinze,et al.  Unraveling the neural basis of insect navigation. , 2017, Current opinion in insect science.

[52]  Yasser Roudi,et al.  Ten Years of Grid Cells. , 2016, Annual review of neuroscience.