On neuromechanical approaches for the study of biological and robotic grasp and manipulation

Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank and open-minded assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas at the interface of neuromechanics, neuroscience, rehabilitation and robotics.

[1]  Marco Santello,et al.  Coordination between digit forces and positions: interactions between anticipatory and feedback control. , 2014, Journal of neurophysiology.

[2]  Daniel P. Ferris,et al.  Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. , 2006, Journal of biomechanics.

[3]  D. Franceschetti,et al.  The Artificial and the Natural: An Evolving Polarity , 2009 .

[4]  Ashutosh Saxena,et al.  Robotic Grasping of Novel Objects , 2006, NIPS.

[5]  Eva Kanso,et al.  Cortical activity predicts good variation in human motor output , 2017, Experimental Brain Research.

[6]  Emanuel Todorov,et al.  Structured variability of muscle activations supports the minimal intervention principle of motor control. , 2009, Journal of neurophysiology.

[7]  Simon A. Overduin,et al.  Microstimulation Activates a Handful of Muscle Synergies , 2012, Neuron.

[8]  J Gibbs,et al.  Postoperative and late survival outcomes after major amputation: findings from the Department of Veterans Affairs National Surgical Quality Improvement Program. , 2001, Surgery.

[9]  Frans C. T. van der Helm,et al.  Identification of intrinsic and reflexive components of human arm dynamics during postural control , 2002, Journal of Neuroscience Methods.

[10]  M. Nussbaum,et al.  Aristotle's De motu animalium , 1980, The Classical Review.

[11]  Emily L. Lawrence,et al.  Outcome measures for hand function naturally reveal three latent domains in older adults: strength, coordinated upper extremity function, and sensorimotor processing , 2015, Front. Aging Neurosci..

[12]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[13]  J. McIntyre,et al.  Servo Hypotheses for the Biological Control of Movement. , 1993, Journal of motor behavior.

[14]  Liebhard Löffler Der Ersatz für die obere Extremität , 1984 .

[15]  Michael Hillman,et al.  Rehabilitation robotics from past to present - a historical perspective , 2003 .

[16]  Francisco J Valero-Cuevas,et al.  Similar movements are associated with drastically different muscle contraction velocities. , 2017, Journal of biomechanics.

[17]  Rolf Pfeifer Morphological Computation - Connecting Brain, Body, and Environment , 2006, Australian Conference on Artificial Intelligence.

[18]  Jesse M. Lingeman,et al.  How Do You Learn to Walk? Thousands of Steps and Dozens of Falls per Day , 2012, Psychological science.

[19]  Francisco J Valero-Cuevas,et al.  Neural Control of Motion-to-Force Transitions with the Fingertip , 2008, The Journal of Neuroscience.

[20]  H. F. Schulte The characteristics of the McKibben artificial muscle , 1961 .

[21]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[22]  G. Oriolo,et al.  Robotics: Modelling, Planning and Control , 2008 .

[23]  Konrad Paul Kording,et al.  Review TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Bayesian decision theory in sensorimotor control , 2022 .

[24]  So-Ryeok Oh,et al.  Cable suspended planar robots with redundant cables: controllers with positive tensions , 2005, IEEE Transactions on Robotics.

[25]  Yuval Tassa,et al.  Real-time behaviour synthesis for dynamic hand-manipulation , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Ravi P. Agarwal,et al.  Optimal Control , 2017, Control Theory for Physicists.

[27]  Yei Hwan Jung,et al.  Stretchable silicon nanoribbon electronics for skin prosthesis , 2014, Nature Communications.

[28]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[29]  Terence D. Sanger Learning Visually Guided Risk-Aware Reaching on a Robot Controlled by a GPU Spiking Neural Network , 2016, ICONIP.

[30]  Daniel Ludvig,et al.  System Identification of Physiological Systems Using Short Data Segments , 2012, IEEE Transactions on Biomedical Engineering.

[31]  M. Latash,et al.  Prehension synergies: Effects of object geometry and prescribed torques , 2002, Experimental Brain Research.

[32]  R. Crowninshield,et al.  A physiologically based criterion of muscle force prediction in locomotion. , 1981, Journal of biomechanics.

[33]  R. Johansson,et al.  Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip , 2004, Experimental Brain Research.

[34]  J. Sanes,et al.  Orderly Somatotopy in Primary Motor Cortex: Does It Exist? , 2001, NeuroImage.

[35]  Gregor Schöner,et al.  The uncontrolled manifold concept: identifying control variables for a functional task , 1999, Experimental Brain Research.

[36]  Robert F. Kirsch,et al.  Multiple-input, multiple-output system identification for characterization of limb stiffness dynamics , 1999, Biological Cybernetics.

[37]  M. Latash,et al.  Learning multi-finger synergies: an uncontrolled manifold analysis , 2004, Experimental Brain Research.

[38]  D Reynaerts,et al.  High torque ultrasonic motors for hand prosthetics: current status and trends. , 2002, Technology and health care : official journal of the European Society for Engineering and Medicine.

[39]  Marco Santello,et al.  Sensorimotor Learning of Dexterous Manipulation , 2018 .

[40]  P. Rhee,et al.  Surgical innovations arising from the Iraq and Afghanistan wars. , 2010, Annual review of medicine.

[41]  P. Brickett,et al.  IN THE SIZE-WEIGHT ILLUSION , 1976 .

[42]  Stephen Mihm,et al.  Artificial Parts, Practical Lives: Modern Histories of Prosthetics , 2002 .

[43]  Stefan Schaal,et al.  Probabilistic Articulated Real-Time Tracking for Robot Manipulation , 2016, IEEE Robotics and Automation Letters.

[44]  Marco Santello,et al.  Digit forces bias sensorimotor transformations underlying control of fingertip position , 2014, Front. Hum. Neurosci..

[45]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[46]  Richard F. ff. Weir,et al.  CHAPTER 32 DESIGN OF ARTIFICIAL ARMS AND HANDS FOR PROSTHETIC APPLICATIONS , 2005 .

[47]  Nathaniel E. Helwig,et al.  An Introduction to Linear Algebra , 2006 .

[48]  D. Wolpert,et al.  Multiple Grasp-Specific Representations of Tool Dynamics Mediate Skillful Manipulation , 2010, Current Biology.

[49]  C. Sherrington,et al.  3). REFLEX INHIBITION AS A FACTOR IN THE COÖRDINATION OF MOVEMENTS AND POSTURES , 1923 .

[50]  Roxanne Panchasi Reconstructions: prosthetics and the rehabilitation of the male body in World War I France , 1995 .

[51]  S. Scott Optimal feedback control and the neural basis of volitional motor control , 2004, Nature Reviews Neuroscience.

[52]  Konrad Paul Kording,et al.  The dynamics of memory as a consequence of optimal adaptation to a changing body , 2007, Nature Neuroscience.

[53]  John M. Hollerbach,et al.  Closed-loop kinematic calibration of the RSI 6-DOF hand controller , 1995, IEEE Trans. Robotics Autom..

[54]  F. Valero-Cuevas,et al.  Quantification of Dexterity as the Dynamical Regulation of Instabilities: Comparisons Across Gender, Age, and Disease , 2014, Front. Neurol..

[55]  Susan J. Lederman,et al.  Extracting object properties through haptic exploration. , 1993, Acta psychologica.

[56]  V. Verdult,et al.  Filtering and System Identification: A Least Squares Approach , 2007 .

[57]  James E. Bobrow,et al.  Modeling, Identification, and Control of a Pneumatically Actuated, Force Controllable Robot , 1996 .

[58]  Scott H. Frey,et al.  Human Anterior Intraparietal and Ventral Premotor Cortices Support Representations of Grasping with the Hand or a Novel Tool , 2010, Journal of Cognitive Neuroscience.

[59]  R. Shadmehr,et al.  Biological Learning and Control: How the Brain Builds Representations, Predicts Events, and Makes Decisions , 2012 .

[60]  A. Hodgkin,et al.  The dual effect of membrane potential on sodium conductance in the giant axon of Loligo , 1952, The Journal of physiology.

[61]  Francisco J. Valero Cuevas,et al.  Spatio-temporal analysis reveals active control of both task-relevant and task-irrelevant variables , 2013, Front. Comput. Neurosci..

[62]  F.E. Zajac,et al.  Restoring unassisted natural gait to paraplegics via functional neuromuscular stimulation: a computer simulation study , 1990, IEEE Transactions on Biomedical Engineering.

[63]  Luca Citi,et al.  Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses , 2014, Science Translational Medicine.

[64]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[65]  R. Lemon Descending pathways in motor control. , 2008, Annual review of neuroscience.

[66]  Gabriel Baud-Bovy,et al.  Neural bases of hand synergies , 2013, Front. Comput. Neurosci..

[67]  Sten Grillner,et al.  Biological Pattern Generation: The Cellular and Computational Logic of Networks in Motion , 2006, Neuron.

[68]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[69]  R. Enoka Neuromechanics of Human Movement , 2001 .

[70]  Gerald E. Loeb,et al.  Biomimetic tactile sensor , 2007 .

[71]  Edmund Y. S. Chao,et al.  GRAPHICAL INTERPRETATION OF THE SOLUTION TO THE REDUNDANT PROBLEM IN BIOMECHANICS. , 1978 .

[72]  P. Helm Clinical mechanics of the hand , 1986 .

[73]  Marco Santello,et al.  Transfer of Learned Manipulation following Changes in Degrees of Freedom , 2011, The Journal of Neuroscience.

[74]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[75]  R. Andersen,et al.  Decoding motor imagery from the posterior parietal cortex of a tetraplegic human , 2015, Science.

[76]  A. Thurston,et al.  PARÉ AND PROSTHETICS: THE EARLY HISTORY OF ARTIFICIAL LIMBS , 2007, ANZ journal of surgery.

[77]  Andreas Daffertshofer,et al.  Functional connectivity in the neuromuscular system underlying bimanual coordination. , 2016, Journal of neurophysiology.

[78]  M. Tresch,et al.  The case for and against muscle synergies , 2022 .

[79]  J. F. Soechting,et al.  Force synergies for multifingered grasping , 2000, Experimental Brain Research.

[80]  Olivier White,et al.  Use-Dependent and Error-Based Learning of Motor Behaviors , 2010, The Journal of Neuroscience.

[81]  M. A. MacIver,et al.  Neuroscience Needs Behavior: Correcting a Reductionist Bias , 2017, Neuron.

[82]  Katsuhiko Ogata,et al.  Modern control engineering (3rd ed.) , 1996 .

[83]  Rolf Pfeifer,et al.  Morphological Computation - Connecting Brain, Body, and Environment , 2006, Australian Conference on Artificial Intelligence.

[84]  E. Bizzi,et al.  Article history: , 2005 .

[85]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[86]  Marco Santello Getting a grasp of theories of sensorimotor control of the hand: identification of underlying neural mechanisms. , 2015, Motor control.

[87]  Neil Gershenfeld,et al.  FAB: The Coming Revolution on Your Desktop--from Personal Computers to Personal Fabrication , 2005 .

[88]  Kevin McSorley,et al.  War and the body: militarisation, practice and experience , 2013 .

[89]  M. Santello,et al.  Are Movement Disorders and Sensorimotor Injuries Pathologic Synergies? When Normal Multi-Joint Movement Synergies Become Pathologic , 2015, Front. Hum. Neurosci..

[90]  C. Sherrington,et al.  REFLEX INHIBITION AS A FACTOR IN THE CO‐ORDINATION OF MOVEMENTS AND POSTURES , 1913 .

[91]  D. Wolpert,et al.  Principles of sensorimotor learning , 2011, Nature Reviews Neuroscience.

[92]  Akira Yoshino,et al.  Development of the Lithium-Ion Battery and Recent Technological Trends , 2014 .

[93]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[94]  F. Valero-Cuevas,et al.  Controlling instabilities in manipulation requires specific cortical-striatal-cerebellar networks. , 2011, Journal of neurophysiology.

[95]  Steven Dubowsky,et al.  Robot Path Planning with Obstacles, Actuator, Gripper, and Payload Constraints , 1989, Int. J. Robotics Res..

[96]  Simon Giszter,et al.  Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective. , 2007, Progress in brain research.

[97]  R. Johansson,et al.  Prediction Precedes Control in Motor Learning , 2003, Current Biology.

[98]  Francesco Lacquaniti,et al.  Evolutionary and Developmental Modules , 2013, Front. Comput. Neurosci..

[99]  M. Hallett,et al.  Rapid plasticity of human cortical movement representation induced by practice. , 1998, Journal of neurophysiology.

[100]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[101]  J. F. Soechting,et al.  Postural Hand Synergies for Tool Use , 1998, The Journal of Neuroscience.

[102]  Francisco J. Valero-Cuevas,et al.  Force Variability during Dexterous Manipulation in Individuals with Mild to Moderate Parkinson’s Disease , 2015, Front. Aging Neurosci..

[103]  R. Klatzky,et al.  Hand movements: A window into haptic object recognition , 1987, Cognitive Psychology.

[104]  Joseph H. Solomon,et al.  Biomechanics: Robotic whiskers used to sense features , 2006, Nature.

[105]  Michael H. Dickinson,et al.  Sensory integration by descending interneurons in the flying fruit fly , 2016 .

[106]  Francisco J. Valero Cuevas,et al.  Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption , 2016, PLoS Comput. Biol..

[107]  R J Full,et al.  How animals move: an integrative view. , 2000, Science.

[108]  Atsushi Konno,et al.  Development of a flexible dual-arm manipulator testbed for space robotics , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[109]  S. Farmer,et al.  Rhythmicity, synchronization and binding in human and primate motor systems , 1998, The Journal of physiology.

[110]  K. J. Cole,et al.  Sensorimotor Memory For Fingertip Forces: Evidence For A Task-Independent Motor Memory , 2003, The Journal of Neuroscience.

[111]  Gerald E Loeb,et al.  Neuromorphic meets neuromechanics, part II: the role of fusimotor drive , 2017, Journal of neural engineering.

[112]  Mark R. Cutkosky,et al.  On grasp choice, grasp models, and the design of hands for manufacturing tasks , 1989, IEEE Trans. Robotics Autom..

[113]  E. Bizzi,et al.  Kinematic strategies and sensorimotor transformations in the wiping movements of frogs. , 1989, Journal of neurophysiology.

[114]  James M. Rehg,et al.  Aggressive driving with model predictive path integral control , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[115]  Terence D. Sanger,et al.  The Tuning of Human Motor Response to Risk in a Dynamic Environment Task , 2015, PloS one.

[116]  Francisco J. Valero Cuevas,et al.  Beyond Parameter Estimation: Extending Biomechanical Modeling by the Explicit Exploration of Model Topology , 2007, IEEE Transactions on Biomedical Engineering.

[117]  P. Strick,et al.  Subdivisions of primary motor cortex based on cortico-motoneuronal cells , 2009, Proceedings of the National Academy of Sciences.

[118]  J. Randall Flanagan,et al.  Coding and use of tactile signals from the fingertips in object manipulation tasks , 2009, Nature Reviews Neuroscience.

[119]  A. Eagger Rehabilitation , 1960 .

[120]  Robert Bogue,et al.  Exoskeletons and robotic prosthetics: a review of recent developments , 2009, Ind. Robot.

[121]  Dinesh K. Pai,et al.  Fast frictional dynamics for rigid bodies , 2005, ACM Trans. Graph..

[122]  G E Loeb,et al.  Understanding sensorimotor feedback through optimal control. , 1990, Cold Spring Harbor symposia on quantitative biology.

[123]  Marco Santello,et al.  Digit Position and Forces Covary during Anticipatory Control of Whole-Hand Manipulation , 2016, Front. Hum. Neurosci..

[124]  Lara A. Boyd,et al.  Is More Better? Using Metadata to Explore Dose–Response Relationships in Stroke Rehabilitation , 2014, Stroke.

[125]  David T. Westwick,et al.  Identification of nonlinear physiological systems , 2003 .

[126]  Tadeusz Uhl,et al.  The inverse identification problem and its technical application , 2007 .

[127]  Chandana Paul,et al.  The Tendon Network of the Fingers Performs Anatomical Computation at a Macroscopic Scale , 2007, IEEE Transactions on Biomedical Engineering.

[128]  Vincent S. Huang,et al.  Rethinking Motor Learning and Savings in Adaptation Paradigms: Model-Free Memory for Successful Actions Combines with Internal Models , 2011, Neuron.

[129]  K. Horch,et al.  Object Discrimination With an Artificial Hand Using Electrical Stimulation of Peripheral Tactile and Proprioceptive Pathways With Intrafascicular Electrodes , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[130]  Jessica Riskin,et al.  Eighteenth-Century Wetware , 2003 .

[131]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[132]  Marco Santello,et al.  Retention and interference of learned dexterous manipulation: interaction between multiple sensorimotor processes. , 2015, Journal of neurophysiology.

[133]  Robert E. Kearney,et al.  Subspace Identification of SISO Hammerstein Systems: Application to Stretch Reflex Identification , 2013, IEEE Transactions on Biomedical Engineering.

[134]  J. Verhoeven,et al.  Developmental Foreign Accent Syndrome: Report of a New Case , 2016, Front. Hum. Neurosci..

[135]  M. Santello,et al.  Anticipatory Planning and Control of Grasp Positions and Forces for Dexterous Two-Digit Manipulation , 2010, The Journal of Neuroscience.

[136]  N. Schweighofer,et al.  Dual Adaptation Supports a Parallel Architecture of Motor Memory , 2009, The Journal of Neuroscience.

[137]  B. Olshausen 20 Years of Learning About Vision: Questions Answered, Questions Unanswered, and Questions Not Yet Asked , 2013 .

[138]  Stefan Schaal,et al.  A Generalized Path Integral Control Approach to Reinforcement Learning , 2010, J. Mach. Learn. Res..

[139]  Cecilia Sik Lanyi,et al.  History of Artificial Intelligence , 2009 .

[140]  Marko Bacic,et al.  Model predictive control , 2003 .

[141]  J. Krakauer,et al.  A computational neuroanatomy for motor control , 2008, Experimental Brain Research.

[142]  Ronald M Harris-Warrick,et al.  General principles of rhythmogenesis in central pattern generator networks. , 2010, Progress in brain research.

[143]  Matteo Bianchi,et al.  A synergy-based hand control is encoded in human motor cortical areas , 2016, eLife.

[144]  Marco Davare,et al.  Interactions between areas of the cortical grasping network , 2011, Current Opinion in Neurobiology.

[145]  K. Reilly,et al.  Independence of force production by digits of the human hand , 2000, Neuroscience Letters.

[146]  David T. Westwick,et al.  Identification of Nonlinear Physiological Systems: Westwick/Identification of Nonlinear Physiological Systems , 2005 .

[147]  C. Petersen,et al.  Cholinergic signals in mouse barrel cortex during active whisker sensing. , 2014, Cell reports.

[148]  Lena H Ting,et al.  Neuromechanics of muscle synergies for posture and movement , 2007, Current Opinion in Neurobiology.

[149]  Bert Sakmann,et al.  Sensory integration across space and in time for decision making in the somatosensory system of rodents , 2007, Proceedings of the National Academy of Sciences.

[150]  M. Latash,et al.  Uncontrolled manifold analysis of single trials during multi-finger force production by persons with and without Down syndrome , 2003, Experimental Brain Research.

[151]  Francesina R. Jackson Outliers: The Story of Success , 2009 .

[152]  K. J. Cole,et al.  Sensory-motor coordination during grasping and manipulative actions , 1992, Current Biology.

[153]  Hod Lipson,et al.  Resilient Machines Through Continuous Self-Modeling , 2006, Science.

[154]  Robert D. Howe,et al.  Human reach-to-grasp compensation with object pose uncertainty , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[155]  G. Schlesinger Der mechanische Aufbau der künstlichen Glieder , 1919 .

[156]  Peter K. Allen,et al.  Graspit! A versatile simulator for robotic grasping , 2004, IEEE Robotics & Automation Magazine.

[157]  Konrad Paul Kording,et al.  Could a Neuroscientist Understand a Microprocessor? , 2016, bioRxiv.

[158]  Yoshiro Imai,et al.  Dynamic active catching using a high-speed multifingered hand and a high-speed vision system , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[159]  W. Prinz,et al.  Perceptual basis of bimanual coordination , 2001, Nature.

[160]  Rachel W Jackson,et al.  An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. , 2015, Journal of applied physiology.

[161]  Oliver Brock,et al.  A novel type of compliant and underactuated robotic hand for dexterous grasping , 2016, Int. J. Robotics Res..

[162]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[163]  Veronica J. Santos,et al.  Biomimetic Tactile Sensor Array , 2008, Adv. Robotics.

[164]  K. L. Lawrence,et al.  Micromachined integrated pressure–thermal sensors on flexible substrates , 2006 .

[165]  Xiaolong Feng,et al.  Finger design automation for industrial robot grippers: A review , 2017, Robotics Auton. Syst..

[166]  E. Bizzi,et al.  Muscle synergy patterns as physiological markers of motor cortical damage , 2012, Proceedings of the National Academy of Sciences.

[167]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[168]  Kian Jalaleddini,et al.  Neuromorphic meets neuromechanics, part I: the methodology and implementation , 2017, Journal of neural engineering.

[169]  J. Dale Prince,et al.  3D Printing: An Industrial Revolution , 2014 .

[170]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[171]  Stefan Schaal,et al.  Learning, planning, and control for quadruped locomotion over challenging terrain , 2011, Int. J. Robotics Res..

[172]  Gaurav S. Sukhatme,et al.  An autonomous manipulation system based on force control and optimization , 2014, Auton. Robots.

[173]  K. J. Cole,et al.  Memory representations underlying motor commands used during manipulation of common and novel objects. , 1993, Journal of neurophysiology.

[174]  Irving M. Copi,et al.  Essentials of Logic , 2004 .

[175]  Frans C. T. van der Helm,et al.  Closed-loop multivariable system identification for the characterization of the dynamic arm compliance using continuous force disturbances: a model study , 2003, Journal of Neuroscience Methods.

[176]  C. Bell,et al.  The Hand, Its Mechanism, and Vital Endowments, as Evincing Design , 1834, The Medical Quarterly Review.

[177]  R. S. Johansson,et al.  Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects , 2004, Experimental Brain Research.

[178]  Francisco J Valero-Cuevas Why the hand? , 2009, Advances in experimental medicine and biology.

[179]  Corey B. Hart,et al.  Motor primitives and synergies in the spinal cord and after injury—the current state of play , 2013, Annals of the New York Academy of Sciences.

[180]  Alison King,et al.  Flexible tactile sensor technology: bringing haptics to life , 2004 .

[181]  M. Latash,et al.  Enslaving effects in multi-finger force production , 2000, Experimental Brain Research.

[182]  Robert E. Kearney,et al.  A Subspace Approach to the Structural Decomposition and Identification of Ankle Joint Dynamic Stiffness , 2017, IEEE Transactions on Biomedical Engineering.

[183]  Marc H Schieber,et al.  Hand function: peripheral and central constraints on performance. , 2004, Journal of applied physiology.

[184]  Dinesh K. Pai,et al.  Musculotendon simulation for hand animation , 2008, ACM Trans. Graph..

[185]  Michael G. Safonov,et al.  Origins of robust control: Early history and future speculations , 2012, Annu. Rev. Control..

[186]  M. Schieber Constraints on somatotopic organization in the primary motor cortex. , 2001, Journal of neurophysiology.

[187]  G. E. Loeb,et al.  A hierarchical foundation for models of sensorimotor control , 1999, Experimental Brain Research.

[188]  Wei Ji Ma,et al.  The Size-Weight Illusion is not anti-Bayesian after all: a unifying Bayesian account , 2016, PeerJ.

[189]  A. Biewener Locomotion as an emergent property of muscle contractile dynamics , 2016, Journal of Experimental Biology.

[190]  Frank L. Lewis,et al.  Neural Network Control Of Robot Manipulators And Non-Linear Systems , 1998 .

[191]  M. Santello,et al.  Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold. , 2008, Journal of neurophysiology.

[192]  R. J. Vogelstein,et al.  Restoring the sense of touch with a prosthetic hand through a brain interface , 2013, Proceedings of the National Academy of Sciences.

[193]  F. Valero-Cuevas,et al.  The strength-dexterity test as a measure of dynamic pinch performance. , 2003, Journal of biomechanics.

[194]  Hod Lipson,et al.  Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion , 2009, Journal of The Royal Society Interface.

[195]  Marco Santello,et al.  Patterns of Hand Motion during Grasping and the Influence of Sensory Guidance , 2002, The Journal of Neuroscience.

[196]  Matteo Bianchi,et al.  Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands. , 2016, Physics of life reviews.

[197]  F. R. Wilson The Hand: How Its Use Shapes the Brain, Language, and Human Culture , 1998 .

[198]  R. Ham,et al.  Compliant actuator designs , 2009, IEEE Robotics & Automation Magazine.

[199]  Charles C. Nguyen,et al.  Dynamic analysis of a 6 DOF CKCM robot end-effector for dual-arm telerobot systems , 1989, Robotics Auton. Syst..

[200]  M. Gentle Neuroethology: An introduction to the neurophysiological fundamentals of behaviour Jorg-Peter Ewert. Translated from the German by Transemantics Inc. Springer-Verlag, Berlin, Heidelberg, New York, 1980. 342 pp., 171 figs., ISBN 3-540-09790-2. DM 49.00/US $ 29.00 (approx.) , 1983, Behavioural Processes.

[201]  Francisco J. Valero Cuevas,et al.  Challenges and New Approaches to Proving the Existence of Muscle Synergies of Neural Origin , 2012, PLoS Comput. Biol..

[202]  Antonio Bicchi,et al.  Modelling natural and artificial hands with synergies , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[203]  Erik Mosekilde PHYSIOLOGICAL CONTROL SYSTEMS , 1997 .

[204]  Christine L. MacKenzie,et al.  The Grasping Hand , 2011, The Grasping Hand.

[205]  R. Lieber Skeletal Muscle Structure and Function: Implications for Rehabilitation and Sports Medicine , 1992 .

[206]  K. Kirketerp-Møller,et al.  Very low survival rates after non-traumatic lower limb amputation in a consecutive series: what to do? , 2012, Interactive cardiovascular and thoracic surgery.

[207]  B. Aikenhead,et al.  Canadarm and the space shuttle , 1983 .

[208]  Vikash Kumar,et al.  MuJoCo HAPTIX: A virtual reality system for hand manipulation , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[209]  Loredana Zollo,et al.  Literature Review on Needs of Upper Limb Prosthesis Users , 2016, Front. Neurosci..

[210]  Christian Bellebaum,et al.  Factors mediating performance monitoring in humans—from context to personality , 2013, Front. Hum. Neurosci..

[211]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[212]  Gerald E. Loeb,et al.  Optimal isn’t good enough , 2012, Biological Cybernetics.

[213]  Vladimir M. Zatsiorsky,et al.  The synergic control of multi-finger force production: stability of explicit and implicit task components , 2016, Experimental Brain Research.

[214]  J F Soechting,et al.  Kinematics of typing: parallel control of the two hands. , 1992, Journal of neurophysiology.

[215]  H. Forssberg,et al.  Activity in the brain network for dynamic manipulation of unstable objects is robust to acute tactile nerve block: An fMRI study , 2015, Brain Research.

[216]  Dinesh K. Pai,et al.  Musculotendon simulation for hand animation , 2008, SIGGRAPH 2008.

[217]  C. Wen,et al.  A review of high energy density lithium–air battery technology , 2013, Journal of Applied Electrochemistry.

[218]  Romeo Ortega,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[219]  Marco Santello,et al.  Task-dependent modulation of multi-digit force coordination patterns. , 2003, Journal of neurophysiology.

[220]  Hiske van Duinen,et al.  Constraints for control of the human hand , 2011, The Journal of physiology.

[221]  E. Torres-Jara,et al.  Challenges for Robot Manipulation in Human Environments , 2006 .

[222]  Charles C. Kemp,et al.  Challenges for robot manipulation in human environments [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[223]  Masaya Hirashima,et al.  Tagging motor memories with transcranial direct current stimulation allows later artificially-controlled retrieval , 2016, eLife.

[224]  Henrietta L. Galiana,et al.  Hybrid model of the context dependent vestibulo-ocular reflex: implications for vergence-version interactions , 2015, Front. Comput. Neurosci..

[225]  J. Flanagan,et al.  Independence of perceptual and sensorimotor predictions in the size–weight illusion , 2000, Nature Neuroscience.

[226]  Kiminao Kogiso,et al.  Simultaneous Estimation of Contraction Ratio and Parameter of McKibben Pneumatic Artificial Muscle Model Using Log-Normalized Unscented Kalman Filter , 2016, 2016 IEEE 4th International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA).

[227]  M. Schieber,et al.  How somatotopic is the motor cortex hand area? , 1993, Science.

[228]  K. J. Cole,et al.  Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. , 1992, Journal of neurophysiology.

[229]  B A Cohn,et al.  Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models. , 2015, Journal of biomechanics.

[230]  Philip N. Sabes,et al.  How Each Movement Changes the Next: An Experimental and Theoretical Study of Fast Adaptive Priors in Reaching , 2011, The Journal of Neuroscience.

[231]  Marco Santello,et al.  Extraction of Time and Frequency Features From Grip Force Rates During Dexterous Manipulation , 2015, IEEE Transactions on Biomedical Engineering.

[232]  Marco Santello,et al.  Effects of Fusion between Tactile and Proprioceptive Inputs on Tactile Perception , 2011, PloS one.

[233]  Neville Hogan,et al.  Robust control of dynamically interacting systems , 1988 .

[234]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[235]  Jason J Kutch,et al.  Muscle redundancy does not imply robustness to muscle dysfunction. , 2011, Journal of biomechanics.

[236]  R. Johansson,et al.  Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. , 1984, Human neurobiology.

[237]  Marco Santello,et al.  Common input to motor units of digit flexors during multi-digit grasping. , 2004, Journal of neurophysiology.

[238]  Evangelos Theodorou,et al.  Neuromuscular stochastic optimal control of a tendon driven index finger model , 2011, Proceedings of the 2011 American Control Conference.

[239]  Michel Verhaegen,et al.  Filtering and System Identification: Frontmatter , 2007 .

[240]  J. Diedrichsen,et al.  Hand use predicts the structure of representations in sensorimotor cortex , 2015, Nature Neuroscience.

[241]  Marco Santello,et al.  Role of across-muscle motor unit synchrony for the coordination of forces , 2004, Experimental Brain Research.

[242]  Reza Shadmehr,et al.  Learning of action through adaptive combination of motor primitives , 2000, Nature.

[243]  Francisco J. Valero-Cuevas,et al.  Fundamentals of Neuromechanics , 2015 .

[244]  J. Ewert,et al.  Neuroethology , 1980, Springer Berlin Heidelberg.

[245]  R. Peterka Sensorimotor integration in human postural control. , 2002, Journal of neurophysiology.

[246]  F. Zajac,et al.  Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. , 1998, Journal of biomechanics.

[247]  Oliver Brock,et al.  Transferring synergies from neuroscience to robotics: Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by M. Santello et al. , 2016, Physics of life reviews.

[248]  Aymar de Rugy,et al.  Muscle Coordination Is Habitual Rather than Optimal , 2012, The Journal of Neuroscience.

[249]  Mitsuo Kawato,et al.  MOSAIC Model for Sensorimotor Learning and Control , 2001, Neural Computation.

[250]  C. Antfolk,et al.  Artificial Redirection of Sensation From Prosthetic Fingers to the Phantom Hand Map on Transradial Amputees: Vibrotactile Versus Mechanotactile Sensory Feedback , 2013, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[251]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[252]  J. Krakauer,et al.  Adaptation to Visuomotor Transformations: Consolidation, Interference, and Forgetting , 2005, The Journal of Neuroscience.

[253]  A.G. Alleyne,et al.  A survey of iterative learning control , 2006, IEEE Control Systems.

[254]  Michel Verhaegen,et al.  State-space system identification of robot manipulator dynamics , 1997 .

[255]  Alan C. Spector,et al.  Behavioral Evidence for a Glucose Polymer Taste Receptor That Is Independent of the T1R2+3 Heterodimer in a Mouse Model , 2011, The Journal of Neuroscience.

[256]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[257]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[258]  W. Reid Skeletal Muscle Structure and Function: Implications for Rehabilitation and Sports Medicine , 1993 .

[259]  Robert D. Howe,et al.  A compliant, underactuated hand for robust manipulation , 2013, Int. J. Robotics Res..

[260]  Alfred C. Schouten,et al.  Nonlinear Connectivity in the Human Stretch Reflex Assessed by Cross-Frequency Phase Coupling , 2016, Int. J. Neural Syst..

[261]  M. U. Kurse,et al.  Computational Models for Neuromuscular Function , 2009, IEEE Reviews in Biomedical Engineering.

[262]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[263]  R. Kálmán On the general theory of control systems , 1959 .

[264]  D. Angelaki,et al.  Vestibular system: the many facets of a multimodal sense. , 2008, Annual review of neuroscience.

[265]  Leonardo Cappello,et al.  Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[266]  H E Ross,et al.  Charpentier (1891) on the size—weight illusion , 1999, Perception & psychophysics.

[267]  K. J. Cole,et al.  Can internal models of objects be utilized for different prehension tasks? , 2005, Journal of neurophysiology.

[268]  Marco Santello,et al.  Learned Manipulation at Unconstrained Contacts Does Not Transfer across Hands , 2014, PloS one.

[269]  Sunil Kumar Agrawal,et al.  Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation , 2012, IEEE Transactions on Robotics.

[270]  A. Jackson,et al.  Flexible Cortical Control of Task-Specific Muscle Synergies , 2012, The Journal of Neuroscience.

[271]  M. M. Gavrilović,et al.  Positional servo-mechanism activated by artificial muscles , 2006, Medical and biological engineering.

[272]  Ravi Balasubramanian,et al.  Implanted passive engineering mechanism improves hand function after tendon transfer surgery: a cadaver-based study , 2015, Hand.

[273]  Manuel G. Catalano,et al.  Adaptive synergies for the design and control of the Pisa/IIT SoftHand , 2014, Int. J. Robotics Res..

[274]  Z. Pylyshyn,et al.  Vision and Action: The Control of Grasping , 1990 .

[275]  Joyce Saunders,et al.  Book Review: A Manual for Occupational Therapists on the Rehabilitation of Upper Extremity Amputees , 1957 .

[276]  C. Guaranteed Margins for LQG Regulators , 1972 .

[277]  Zoubin Ghahramani,et al.  Perspectives and problems in motor learning , 2001, Trends in Cognitive Sciences.

[278]  Marco Santello,et al.  Effects of Visual Cues of Object Density on Perception and Anticipatory Control of Dexterous Manipulation , 2013, PloS one.

[279]  Magnus Egerstedt,et al.  Constructing and Implementing Motion Programs for Robotic Marionettes , 2011, IEEE Transactions on Automatic Control.