How do neurons operate on sparse distributed representations? A mathematical theory of sparsity, neurons and active dendrites

We propose a formal mathematical model for sparse representations and active dendrites in neocortex. Our model is inspired by recent experimental findings on active dendritic processing and NMDA spikes in pyramidal neurons. These experimental and modeling studies suggest that the basic unit of pattern memory in the neocortex is instantiated by small clusters of synapses operated on by localized non-linear dendritic processes. We derive a number of scaling laws that characterize the accuracy of such dendrites in detecting activation patterns in a neuronal population under adverse conditions. We introduce the union property which shows that synapses for multiple patterns can be randomly mixed together within a segment and still lead to highly accurate recognition. We describe simulation results that provide further insight into sparse representations as well as two primary results. First we show that pattern recognition by a neuron with active dendrites can be extremely accurate and robust with high dimensional sparse inputs even when using a tiny number of synapses to recognize large patterns. Second, equations representing recognition accuracy of a dendrite predict optimal NMDA spiking thresholds under a generous set of assumptions. The prediction tightly matches NMDA spiking thresholds measured in the literature. Our model matches many of the known properties of pyramidal neurons. As such the theory provides a mathematical framework for understanding the benefits and limits of sparse representations in cortical networks.

[1]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[2]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[3]  Edmund T. Rolls,et al.  The relative advantages of sparse versus distributed encoding for associative neuronal networks in the brain , 1990 .

[4]  Marc Timme,et al.  Statistical physics of neural systems with non-additive dendritic coupling , 2015, 1507.03881.

[5]  Günther Palm,et al.  Memory Capacities for Synaptic and Structural Plasticity G ¨ Unther Palm , 2022 .

[6]  Pentti Kanerva,et al.  Sparse Distributed Memory , 1988 .

[7]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[8]  Bartlett W. Mel,et al.  Encoding and Decoding Bursts by NMDA Spikes in Basal Dendrites of Layer 5 Pyramidal Neurons , 2009, The Journal of Neuroscience.

[9]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[10]  Bartlett W. Mel,et al.  Translation-Invariant Orientation Tuning in Visual “Complex” Cells Could Derive from Intradendritic Computations , 1998, The Journal of Neuroscience.

[11]  Norio Matsuki,et al.  Locally Synchronized Synaptic Inputs , 2012, Science.

[12]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[13]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[14]  M. Häusser,et al.  Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons , 2010, Science.

[15]  M. Häusser,et al.  Synaptic Integration Gradients in Single Cortical Pyramidal Cell Dendrites , 2011, Neuron.

[16]  Roberto Malinow,et al.  Compartmentalized versus Global Synaptic Plasticity on Dendrites Controlled by Experience , 2011, Neuron.

[17]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[18]  Alison L. Barth,et al.  Experimental evidence for sparse firing in the neocortex , 2012, Trends in Neurosciences.

[19]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[20]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[21]  Alexander S. Ecker,et al.  Decorrelated Neuronal Firing in Cortical Microcircuits , 2010, Science.

[22]  Jean-Pierre Nadal,et al.  Information storage in sparsely coded memory nets , 1990 .

[23]  Wen-Liang L Zhou,et al.  The decade of the dendritic NMDA spike , 2010, Journal of neuroscience research.

[24]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[25]  M. Cohen,et al.  Measuring and interpreting neuronal correlations , 2011, Nature Neuroscience.

[26]  L. Cosmides From : The Cognitive Neurosciences , 1995 .

[27]  Sven Jahnke,et al.  Propagating synchrony in feed-forward networks , 2013, Front. Comput. Neurosci..

[28]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[29]  T. Aflalo,et al.  Mapping Behavioral Repertoire onto the Cortex , 2007, Neuron.

[30]  J. Hopfield,et al.  All-or-none potentiation at CA3-CA1 synapses. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  L. Pinneo On noise in the nervous system. , 1966, Psychological review.

[32]  Peter Földiák,et al.  Adaptation and decorrelation in the cortex , 1989 .

[33]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[34]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[35]  József Fiser,et al.  Coding of Natural Scenes in Primary Visual Cortex , 2003, Neuron.

[36]  Spencer L. Smith,et al.  Parallel processing of visual space by neighboring neurons in mouse visual cortex , 2010, Nature Neuroscience.

[37]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[38]  T. Hromádka,et al.  Sparse Representation of Sounds in the Unanesthetized Auditory Cortex , 2008, PLoS biology.

[39]  H. Sompolinsky,et al.  Sparseness and Expansion in Sensory Representations , 2014, Neuron.

[40]  A. Rodríguez-Contreras,et al.  Learning Drives Differential Clustering of Axodendritic Contacts in the Barn Owl Auditory System , 2008, The Journal of Neuroscience.

[41]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[42]  Wolfgang Maass,et al.  Branch-Specific Plasticity Enables Self-Organization of Nonlinear Computation in Single Neurons , 2011, The Journal of Neuroscience.

[43]  L. Abbott,et al.  Limits on the memory storage capacity of bounded synapses , 2007, Nature Neuroscience.

[44]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[45]  Alan Fine,et al.  Expression of Long-Term Plasticity at Individual Synapses in Hippocampus Is Graded, Bidirectional, and Mainly Presynaptic: Optical Quantal Analysis , 2009, Neuron.

[46]  Subutai Ahmad,et al.  Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex , 2015, Front. Neural Circuits.

[47]  Bartlett W. Mel,et al.  Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model , 2009, Neuron.

[48]  M. Graziano,et al.  Complex Movements Evoked by Microstimulation of Precentral Cortex , 2002, Neuron.

[49]  Alcino J. Silva,et al.  Synaptic clustering within dendrites: An emerging theory of memory formation , 2015, Progress in Neurobiology.

[50]  Tobias Bonhoeffer,et al.  Activity-Dependent Clustering of Functional Synaptic Inputs on Developing Hippocampal Dendrites , 2011, Neuron.

[51]  Bartlett W. Mel,et al.  Choice and Value Flexibility Jointly Contribute to the Capacity of a Subsampled Quadratic Classifier , 2000, Neural Computation.

[52]  Jackie Schiller,et al.  Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. , 2008, Journal of neurophysiology.

[53]  Bartlett W. Mel,et al.  Cortical rewiring and information storage , 2004, Nature.

[54]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[55]  Burton H. Bloom,et al.  Space/time trade-offs in hash coding with allowable errors , 1970, CACM.

[56]  Judit K. Makara,et al.  Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons , 2009, Nature Neuroscience.

[57]  Günther Palm,et al.  Improved bidirectional retrieval of sparse patterns stored by Hebbian learning , 1999, Neural Networks.

[58]  M. Gazzaniga The cognitive neurosciences, 3rd edition , 2004 .

[59]  Daniel J. Amit,et al.  Learning in Neural Networks with Material Synapses , 1994, Neural Computation.