Spatio-temporal requirements for binocular correlation in stereopsis

We measured sensitivity to binocular correlation in dynamic random-dot stereograms that defined moving sinusoidal gratings-in-depth. At a range of spatial frequencies and drift rates we established sensitivity by adding Gaussian distributed disparity noise to the modulation of disparity that defined a cyclopean grating, and finding the noise amplitude that rendered the grating just detectable. This permitted correlation thresholds to be measured at a range of suprathreshold disparity amplitudes. Spatial requirements for binocular correlation depend little on temporal frequency, and vice versa. This suggests that binocular correlation mechanisms can be characterized by independent spatial and temporal sensitivity functions. The temporal frequency function has a low pass characteristic. Sensitivity declines above about 1 c/sec, reaching its limit at 4-8 c/sec. The spatial characteristic depends greatly on the amplitude of disparity modulation, changing from band pass at low amplitude to low pass at high amplitude. The maximum resolvable spatial frequency is 4-6 c/deg, but declines sharply for relatively high amplitudes. The interaction between amplitude and spatial frequency cannot be explained by fixed high or low limits on detectable disparity gradients.

[1]  Casper J. Erkelens,et al.  Fusional limits for a large random-dot stereogram , 1988, Vision Research.

[2]  W. H. Ittelson Visual space perception , 1961 .

[3]  A. Norcia,et al.  Temporal frequency limits for stereoscopic apparent motion processes , 1984, Vision Research.

[4]  Whitman Richards,et al.  Response functions for sine- and square-wave modulations of disparity. , 1972 .

[5]  Christopher W. Tyler,et al.  Spatio-temporal properties of Panum's fusional area , 1981, Vision Research.

[6]  H. Smallman,et al.  Size-disparity correlation in stereopsis at contrast threshold. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[8]  J V Odom,et al.  Temporal integration in global stereopsis , 1985, Perception & psychophysics.

[9]  D. Regan,et al.  Disparity Detectors in Human Depth Perception: Evidence for Directional Selectivity , 1973, Science.

[10]  D. Ferster A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex , 1981, The Journal of physiology.

[11]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[12]  R S Harwerth,et al.  Viewing Time and Stereoscopic Threshold with Random‐Dot Stereograms , 1977, American journal of optometry and physiological optics.

[13]  R. Schumer,et al.  Independent stereoscopic channels for different extents of spatial pooling , 1979, Vision Research.

[14]  Lawrence K. Cormack,et al.  The effect of stimulus contrast and interocular correlation on disparity vergence , 1994, Vision Research.

[15]  R Phinney,et al.  Spatial Displacement Limits for Cyclopean (Stereoscopic) Apparent-Motion Perception , 1994, Perception.

[16]  Lawrence K. Cormack,et al.  Disparity tuning in mechanisms of human stereopsis , 1992, Vision Research.

[17]  D. Regan,et al.  Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space , 1973, The Journal of physiology.

[18]  C. WILLIAM TYLER,et al.  Depth perception in disparity gratings , 1974, Nature.

[19]  W. Uttal,et al.  Parameters of tachistoscopic stereopsis , 1975, Vision Research.

[20]  B. Julesz Binocular depth perception of computer-generated patterns , 1960 .

[21]  Gerald M. Edelman,et al.  Dynamic aspects of neocortical function , 1984 .

[22]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[23]  B. Rogers,et al.  Similarities between motion parallax and stereopsis in human depth perception , 1982, Vision Research.

[24]  B. Julesz,et al.  Independent Spatial-Frequency-Tuned Channels in Binocular Fusion and Rivalry , 1975 .

[25]  D. Hubel,et al.  Stereoscopic Vision in Macaque Monkey: Cells sensitive to Binocular Depth in Area 18 of the Macaque Monkey Cortex , 1970, Nature.

[26]  B. Julesz,et al.  Binocular disparity modulation sensitivity to disparities offset from the plane of fixation , 1984, Vision Research.

[27]  B. G. Cumming,et al.  Binocular mechanisms for detecting motion-in-depth , 1994, Vision Research.

[28]  A. Parker,et al.  An orientation-tuned component in the contrast masking of stereopsis , 1993, Vision Research.

[29]  C. Tyler Stereoscopic Tilt and Size Aftereffects , 1975 .

[30]  Peter J. Burt,et al.  Range of stereopsis (A) , 1978 .

[31]  C. Tyler Stereoscopic Vision: Cortical Limitations and a Disparity Scaling Effect , 1973, Science.

[32]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[33]  Gregory C. DeAngelis,et al.  Depth is encoded in the visual cortex by a specialized receptive field structure , 1991, Nature.

[34]  C. Schor,et al.  Disparity range for local stereopsis as a function of luminance spatial frequency , 1983, Vision Research.

[35]  Lawrence K. Cormack,et al.  An upper limit to the binocular combination of stimuli , 1994, Vision Research.

[36]  B. Julesz,et al.  A disparity gradient limit for binocular fusion. , 1980, Science.

[37]  C. Tyler Spatial organization of binocular disparity sensitivity , 1975, Vision Research.

[38]  S. R. Lehky,et al.  Neural models of binocular depth perception. , 1990, Cold Spring Harbor symposia on quantitative biology.

[39]  G. Poggio,et al.  Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey , 1981, The Journal of physiology.

[40]  H. Berg Cold Spring Harbor Symposia on Quantitative Biology.: Vol. LII. Evolution of Catalytic Functions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987, ISBN 0-87969-054-2, xix + 955 pp., US $150.00. , 1989 .

[41]  Tadasu Oyama,et al.  Visual Space Perception , 1962 .

[42]  L. Cormack,et al.  Interocular correlation, luminance contrast and cyclopean processing , 1991, Vision Research.

[43]  A. Parker,et al.  Efficiency of stereopsis in random-dot stereograms. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[44]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[45]  B JULESZ,et al.  Binocular Depth Perception without Familiarity Cues , 1964, Science.

[46]  Lawrence K. Cormack,et al.  Hyperacuity, superresolution and gap resolution in human stereopsis , 1989, Vision Research.

[47]  B. C. Motter,et al.  Responses of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic random-dot stereograms , 1985, Vision Research.

[48]  Christopher W. Tyler,et al.  Binocular cross-correlation in time and space , 1978, Vision Research.

[49]  R. Blake,et al.  Spatial frequency tuning of human stereopsis , 1991, Vision Research.

[50]  C W Tyler,et al.  Stereoscopic Depth Movement: Two Eyes Less Sensitive than One , 1971, Science.