Inhibitory Regulation of Dendritic Activity in vivo

The spatiotemporal control of neuronal excitability is fundamental to the inhibitory process. We now have a wealth of information about the active dendritic properties of cortical neurons including axonally generated sodium action potentials as well as local sodium spikelets generated in the dendrites, calcium plateau spikes, and NMDA spikes. All of these events have been shown to be highly modified by the spatiotemporal pattern of nearby inhibitory input which can drastically change the output firing mode of the neuron. This means that particular populations of interneurons embedded in the neocortical microcircuitry can more precisely control pyramidal cell output than has previously been thought. Furthermore, the output of any given neuron tends to feed back onto inhibitory circuits making the resultant network activity further dependent on inhibition. Network activity is therefore ultimately governed by the subcellular microcircuitry of the cortex and it is impossible to ignore the subcompartmentalization of inhibitory influence at the neuronal level in order to understand its effects at the network level. In this article, we summarize the inhibitory circuits that have been shown so far to act on specific dendritic compartments in vivo.

[1]  G. Stuart,et al.  Excitatory Actions of GABA in the Cortex , 2003, Neuron.

[2]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[3]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[4]  Christof Koch,et al.  Shunting Inhibition Does Not Have a Divisive Effect on Firing Rates , 1997, Neural Computation.

[5]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[6]  C. Blakemore,et al.  Effects of bicuculline on functions of inhibition in visual cortex , 1974, Nature.

[7]  Bartlett W. Mel,et al.  Information Processing in Dendritic Trees , 1994, Neural Computation.

[8]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[9]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[10]  Michael Häusser,et al.  Dendritic Calcium Signaling Triggered by Spontaneous and Sensory-Evoked Climbing Fiber Input to Cerebellar Purkinje Cells In Vivo , 2011, The Journal of Neuroscience.

[11]  Bartlett W. Mel,et al.  A model for intradendritic computation of binocular disparity , 2000, Nature Neuroscience.

[12]  Yves Frégnac,et al.  Shunting inhibition, a silent step in visual cortical computation , 2003, Journal of Physiology-Paris.

[13]  P. J. Sjöström,et al.  A Cooperative Switch Determines the Sign of Synaptic Plasticity in Distal Dendrites of Neocortical Pyramidal Neurons , 2006, Neuron.

[14]  H. Adesnik,et al.  Lateral competition for cortical space by layer-specific horizontal circuits , 2010, Nature.

[15]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[16]  Michael Okun,et al.  Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities , 2008, Nature Neuroscience.

[17]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[18]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[19]  R. Druga Neocortical inhibitory system. , 2009, Folia biologica.

[20]  Matthew E Larkum,et al.  Synaptic clustering by dendritic signalling mechanisms , 2008, Current Opinion in Neurobiology.

[21]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[22]  D. Prince,et al.  Intradendritic recordings from hippocampal neurons. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[24]  Nathalie L Rochefort,et al.  Functional mapping of single spines in cortical neurons in vivo , 2011, Nature.

[25]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[26]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[27]  Thomas K. Berger,et al.  Brief Bursts Self-Inhibit and Correlate the Pyramidal Network , 2010, PLoS biology.

[28]  Norio Matsuki,et al.  Locally Synchronized Synaptic Inputs , 2012, Science.

[29]  A. Burkhalter,et al.  Role of GABAB receptor-mediated inhibition in reciprocal interareal pathways of rat visual cortex. , 1999, Journal of neurophysiology.

[30]  Daniel N. Hill,et al.  Development of Direction Selectivity in Mouse Cortical Neurons , 2011, Neuron.

[31]  Rodney J. Douglas,et al.  Inhibition in cortical circuits , 2009, Current Biology.

[32]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[33]  B. Doiron,et al.  Regulation of somatic firing dynamics by backpropagating dendritic spikes , 2008, Journal of Physiology-Paris.

[34]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[35]  D. A. Brown,et al.  GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[37]  W. R. Lieb,et al.  Molecular and cellular mechanisms of general anaesthesia , 1994, Nature.

[38]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[39]  B. Kampa,et al.  Synaptic integration in dendritic trees. , 2005, Journal of neurobiology.

[40]  Matthew E Larkum,et al.  Effect of common anesthetics on dendritic properties in layer 5 neocortical pyramidal neurons. , 2008, Journal of neurophysiology.

[41]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[42]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[43]  Xiaoqin Wang,et al.  Level Invariant Representation of Sounds by Populations of Neurons in Primary Auditory Cortex , 2008, The Journal of Neuroscience.

[44]  John A. Freeman,et al.  Dendritic Spikes and Their Inhibition in Alligator Purkinje Cells , 1968, Science.

[45]  N. Berrow,et al.  GABAB receptor modulation of Ca2+ currents in rat sensory neurones by the G protein G(0): antisense oligonucleotide studies. , 1993, The Journal of physiology.

[46]  Hongkui Zeng,et al.  Differential tuning and population dynamics of excitatory and inhibitory neurons reflect differences in local intracortical connectivity , 2011, Nature Neuroscience.

[47]  R. Nicoll,et al.  Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells , 1984, Nature.

[48]  Adam G. Carter,et al.  GABAB Receptors Modulate NMDA Receptor Calcium Signals in Dendritic Spines , 2010, Neuron.

[49]  Arno C. Schmitt,et al.  Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A , 2011, Proceedings of the National Academy of Sciences.

[50]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[51]  P. Schwindt,et al.  Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. , 1999, Journal of neurophysiology.

[52]  Alessandra Angelucci,et al.  Strong Recurrent Networks Compute the Orientation Tuning of Surround Modulation in the Primate Primary Visual Cortex , 2012, The Journal of Neuroscience.

[53]  Bartlett W. Mel,et al.  Dendrites: bug or feature? , 2003, Current Opinion in Neurobiology.

[54]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[55]  Bert Sakmann,et al.  Dendritic coding of multiple sensory inputs in single cortical neurons in vivo , 2011, Proceedings of the National Academy of Sciences.

[56]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[57]  Brent Doiron,et al.  Deterministic Multiplicative Gain Control with Active Dendrites , 2005, The Journal of Neuroscience.

[58]  Thomas Klausberger,et al.  GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus , 2009, The European journal of neuroscience.

[59]  Winfried Denk,et al.  Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo , 1999, Nature Neuroscience.

[60]  Moritz Helmstaedter,et al.  High-accuracy neurite reconstruction for high-throughput neuroanatomy , 2011, Nature Neuroscience.

[61]  Edward M. Callaway,et al.  Laminar Specificity of Functional Input to Distinct Types of Inhibitory Cortical Neurons , 2009, The Journal of Neuroscience.

[62]  R. Shapley,et al.  Dynamics of Orientation Selectivity in the Primary Visual Cortex and the Importance of Cortical Inhibition , 2003, Neuron.

[63]  Yitzhak Schiller,et al.  NMDA receptor-mediated dendritic spikes and coincident signal amplification , 2001, Current Opinion in Neurobiology.

[64]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[65]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[66]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[67]  P. Jonas,et al.  Distal initiation and active propagation of action potentials in interneuron dendrites. , 2000, Science.

[68]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[69]  C. Koch,et al.  Amplification and linearization of distal synaptic input to cortical pyramidal cells. , 1994, Journal of neurophysiology.

[70]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[71]  M. Stewart,et al.  Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in guinea‐pig hippocampus. , 1992, The Journal of physiology.

[72]  Matthew E. Larkum,et al.  The GABAB1b Isoform Mediates Long-Lasting Inhibition of Dendritic Ca2+ Spikes in Layer 5 Somatosensory Pyramidal Neurons , 2006, Neuron.

[73]  Jessica A. Cardin,et al.  Dissecting local circuits in vivo: Integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity , 2012, Journal of Physiology-Paris.

[74]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[75]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[76]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[77]  H. Adesnik,et al.  Input normalization by global feedforward inhibition expands cortical dynamic range , 2009, Nature Neuroscience.

[78]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[79]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[80]  Kaspar Meyer Primary sensory cortices, top-down projections and conscious experience , 2011, Progress in Neurobiology.

[81]  Alain Destexhe,et al.  Inhibition Determines Membrane Potential Dynamics and Controls Action Potential Generation in Awake and Sleeping Cat Cortex , 2007, The Journal of Neuroscience.

[82]  R. Clay Reid,et al.  Visually evoked calcium action potentials in cat striate cortex , 1995, Nature.

[83]  Y. Kubota,et al.  Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  S. Hestrin,et al.  Morphology and Physiology of Cortical Neurons in Layer I , 1996, The Journal of Neuroscience.

[85]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[86]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  F. Karube,et al.  Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. , 2011, Cerebral cortex.

[88]  S. Hestrin,et al.  Properties of GABAA Receptors Underlying Inhibitory Synaptic Currents in Neocortical Pyramidal Neurons , 1997, The Journal of Neuroscience.

[89]  Nathan R. Wilson,et al.  Response Features of Parvalbumin-Expressing Interneurons Suggest Precise Roles for Subtypes of Inhibition in Visual Cortex , 2010, Neuron.

[90]  R Llinás,et al.  Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat , 1970, The Journal of physiology.

[91]  K. Fuxe,et al.  Understanding wiring and volume transmission , 2010, Brain Research Reviews.

[92]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[93]  M M Merzenich,et al.  Representation of cochlea within primary auditory cortex in the cat. , 1975, Journal of neurophysiology.

[94]  M. Larkum,et al.  The Cellular Basis of GABAB-Mediated Interhemispheric Inhibition , 2012, Science.

[95]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[96]  Steffen Prohaska,et al.  Large-Scale Automated Histology in the Pursuit of Connectomes , 2011, The Journal of Neuroscience.

[97]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[98]  B. Zemelman,et al.  The columnar and laminar organization of inhibitory connections to neocortical excitatory cells , 2010, Nature Neuroscience.

[99]  B. Bean,et al.  GABAB Receptor Inhibition of P-type Ca2+ Channels in Central Neurons , 1993, Neuron.

[100]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[101]  Christian Wozny,et al.  Specificity of Synaptic Connectivity between Layer 1 Inhibitory Interneurons and Layer 2/3 Pyramidal Neurons in the Rat Neocortex , 2011, Cerebral cortex.

[102]  Csaba Varga,et al.  HUMAN AND , 2022 .

[103]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[104]  Nathalie L Rochefort,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[105]  Adam G. Carter,et al.  GABAB Receptor Modulation of Voltage-Sensitive Calcium Channels in Spines and Dendrites , 2011, The Journal of Neuroscience.

[106]  Jessica A. Cardin,et al.  Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2 , 2010, Nature Protocols.

[107]  Anders Lansner,et al.  Biophysically detailed modelling of microcircuits and beyond , 2005, Trends in Neurosciences.

[108]  T. Macdonald,et al.  Molecular pharmacology of T-type Ca2+ channels. , 2001, Japanese journal of pharmacology.

[109]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[110]  Massimo Scanziani,et al.  Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells , 2006, Nature Neuroscience.

[111]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[112]  L. Benardo,et al.  Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro. , 1994, The Journal of physiology.

[113]  R K Wong,et al.  Dendritic mechanisms underlying penicillin-induced epileptiform activity. , 1979, Science.

[114]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[115]  Stephen R. Williams,et al.  Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons , 1999, The Journal of physiology.

[116]  R. Nieuwenhuys The neocortex , 1994, Anatomy and Embryology.

[117]  S. Cruikshank,et al.  Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex , 2007, Nature Neuroscience.

[118]  Israel Nelken,et al.  Sound‐evoked network calcium transients in mouse auditory cortex in vivo , 2012, The Journal of physiology.

[119]  Y. Dan,et al.  Spike Timing-Dependent Plasticity of Neural Circuits , 2004, Neuron.

[120]  M. Häusser,et al.  The single dendritic branch as a fundamental functional unit in the nervous system , 2010, Current Opinion in Neurobiology.

[121]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[122]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.

[123]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[124]  L. Benardo,et al.  Inhibition in the Cortical Network , 1995 .

[125]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[126]  M. Carandini,et al.  Parvalbumin-Expressing Interneurons Linearly Transform Cortical Responses to Visual Stimuli , 2012, Neuron.

[127]  R Llinás,et al.  Electroresponsive properties of dendrites in central neurons. , 1975, Advances in neurology.

[128]  H. Lüscher,et al.  GABAB receptor‐dependent modulation of network activity in the rat prefrontal cortex in vitro , 2010, The European journal of neuroscience.

[129]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[130]  G. Buzsáki,et al.  Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[131]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[132]  Javier DeFelipe,et al.  Cortical interneurons: from Cajal to 2001. , 2002, Progress in brain research.

[133]  R. Miller,et al.  GABAB receptor‐mediated inhibition of Ca2+ currents and synaptic transmission in cultured rat hippocampal neurones. , 1991, The Journal of physiology.

[134]  S. Hestrin,et al.  Synaptic Interactions of Late-Spiking Neocortical Neurons in Layer 1 , 2003, The Journal of Neuroscience.

[135]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[136]  T. Oertner,et al.  Differential Compartmentalization and Distinct Functions of GABAB Receptor Variants , 2006, Neuron.

[137]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[138]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.