Frontiers of Computer Vision: 26th International Workshop, IW-FCV 2020, Ibusuki, Kagoshima, Japan, February 20–22, 2020, Revised Selected Papers

Real-time implementation and robustness against illumination variation are two essential issues for traffic congestion classification systems, which are still challenging issues. This paper proposes an efficient automated system for traffic congestion classification based on compact image representation and deep residual networks. Specifically, the proposed system comprises three steps: video dynamics extraction, feature extraction, and classification. In the first step, we propose two approaches for modeling the dynamics of each video and produce a compact representation. In the first approach, we aggregate the optical flow in front direction, while in the second approach, we use a temporal pooling method to generate a dynamic image describing the input video. In the second step, we use a deep residual neural network to extract texture features from the compact representation of each video. In the third step, we build a classification model to discriminate between the classes of traffic congestion (low, medium, or high). We use the UCSD and NU1 traffic congestion datasets to assess the performance of the proposed method. The two datasets contain different illumination and shadow variations. The proposed method gives excellent results compared to state-of-theart methods. It also can classify the input video in a short time (37 fps), and thus, we can use it with real-time applications.

[1]  Toby P. Breckon,et al.  A non-temporal texture driven approach to real-time fire detection , 2011, 2011 18th IEEE International Conference on Image Processing.

[2]  Chi-Keung Tang,et al.  KNN Matting , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Hisashi Date,et al.  Spherical Panoramic Image-based Localization by Deep Learning , 2018 .

[4]  Matthias Nießner,et al.  Shading-based refinement on volumetric signed distance functions , 2015, ACM Trans. Graph..

[5]  Silvio Savarese,et al.  Learning to Track at 100 FPS with Deep Regression Networks , 2016, ECCV.

[6]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[7]  Yassine Ruichek,et al.  BSCGAN: Deep Background Subtraction with Conditional Generative Adversarial Networks , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[8]  Dahua Lin,et al.  Hidden Factor Analysis for Age Invariant Face Recognition , 2013, 2013 IEEE International Conference on Computer Vision.

[9]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[10]  Elmar Nöth,et al.  Natural Language Analysis to Detect Parkinson's Disease , 2019, TSD.

[11]  Van-Dung Hoang,et al.  Deep CNN and Data Augmentation for Skin Lesion Classification , 2018, ACIIDS.

[12]  Bram van Ginneken,et al.  Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning , 2017, Radiological Physics and Technology.

[13]  Marcos Salganicoff,et al.  Impact of a Computer-Aided Detection (CAD) System Integrated into a Picture Archiving and Communication System (PACS) on Reader Sensitivity and Efficiency for the Detection of Lung Nodules in Thoracic CT Exams , 2012, Journal of Digital Imaging.

[14]  Eduardo Valle,et al.  Knowledge transfer for melanoma screening with deep learning , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[15]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[16]  Michael Felsberg,et al.  Discriminative Scale Space Tracking , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Charless C. Fowlkes,et al.  Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation , 2016, ECCV.

[18]  Fang Deng,et al.  Multidimensional zero-crossing interval points: a low sampling rate acoustic fingerprint recognition method , 2018, Science China Information Sciences.

[19]  Soon Ki Jung,et al.  Moving Object Detection on RGB-D Videos Using Graph Regularized Spatiotemporal RPCA , 2017, ICIAP Workshops.

[20]  O. Faugeras,et al.  The calibration problem for stereoscopic vision , 1989 .

[21]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[22]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[24]  Pat Hanrahan,et al.  A signal-processing framework for inverse rendering , 2001, SIGGRAPH.

[25]  Robert B Wallace,et al.  A snapshot of smokers after lung and colorectal cancer diagnosis , 2012, Cancer.

[26]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[27]  Yasuyuki Matsushita,et al.  High-quality shape from multi-view stereo and shading under general illumination , 2011, CVPR 2011.

[28]  Raghad Abdulaali Azeez,et al.  Skin Lesion Segmentation by using Deep Learning Techniques , 2019, 2019 Medical Technologies Congress (TIPTEKNO).

[29]  Juan Ignacio Godino-Llorente,et al.  Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect Parkinson's Disease , 2018, Appl. Soft Comput..

[30]  Lucia Maddalena,et al.  Scene background initialization: A taxonomy , 2017, Pattern Recognit. Lett..

[31]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Peter Bajcsy,et al.  Cell Image Segmentation Using Generative Adversarial Networks, Transfer Learning, and Augmentations , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[33]  Kavita Bala,et al.  Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  B. van Ginneken,et al.  Computer-aided diagnosis in high resolution CT of the lungs. , 2003, Medical physics.

[35]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[36]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[37]  In-So Kweon,et al.  Natural Image Matting Using Deep Convolutional Neural Networks , 2016, ECCV.

[38]  William T. Freeman,et al.  The patch transform and its applications to image editing , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Jian-Huang Lai,et al.  Face illumination normalization on large and small scale features , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Muhammad Nadeem Majeed,et al.  Mispronunciation Detection Using Deep Convolutional Neural Network Features and Transfer Learning-Based Model for Arabic Phonemes , 2019, IEEE Access.

[41]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[42]  Lu Fang,et al.  SurfaceNet: An End-to-End 3D Neural Network for Multiview Stereopsis , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[43]  Ronald M. Summers,et al.  Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique , 2016 .

[44]  Yong-Ho Seo,et al.  Mixed Reality System for Virtual Interior Design , 2013 .

[45]  Jongmoo Choi,et al.  Real-time 3D face identification from a depth camera , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[46]  Limin Wang,et al.  Multi-view Super Vector for Action Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Laura Balzano,et al.  Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Antoine Doucet,et al.  AI outperformed every dermatologist: Improved dermoscopic melanoma diagnosis through customizing batch logic and loss function in an optimized Deep CNN architecture , 2020, ArXiv.

[50]  R. Woodham Gradient and Curvature from Photometric Stereo Including Local Condence Estimation , 1994 .

[51]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Hubert P. H. Shum,et al.  Northumbria Research , 2022 .

[53]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[54]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[55]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[56]  Tatsuya Harada,et al.  Learning View Priors for Single-View 3D Reconstruction , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Bohyung Han,et al.  Learning occlusion with likelihoods for visual tracking , 2011, 2011 International Conference on Computer Vision.

[58]  Kang-Hyun Jo,et al.  Recent Advances in the Field of Foreground Detection: An Overview , 2017, ACIIDS.

[59]  George Vogiatzis,et al.  Self-calibrated, Multi-spectral Photometric Stereo for 3D Face Capture , 2012, International Journal of Computer Vision.

[60]  Guillaume-Alexandre Bilodeau,et al.  SuBSENSE: A Universal Change Detection Method With Local Adaptive Sensitivity , 2015, IEEE Transactions on Image Processing.

[61]  Kiyoharu Aizawa,et al.  Photometric Stereo Using Sparse Bayesian Regression for General Diffuse Surfaces , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[63]  Berthold K. P. Horn,et al.  Determining Shape and Reflectance Using Multiple Images , 1978 .

[64]  Matthew J. Hausknecht,et al.  Beyond short snippets: Deep networks for video classification , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Georg Langs,et al.  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.

[66]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[67]  Yu Qiao,et al.  Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[68]  Bogdan Raducanu,et al.  Transferring GANs: generating images from limited data , 2018, ECCV.

[69]  Yasushi Makihara,et al.  Gait Recognition Using a View Transformation Model in the Frequency Domain , 2006, ECCV.

[70]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[71]  Kang-Hyun Jo,et al.  Probabilistic foreground detector with camouflage detection for sterile zone monitoring , 2016, 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE).

[72]  Olivier D. Faugeras,et al.  Modelling dynamic scenes by registering multi-view image sequences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[73]  Pradit Mittrapiyanuruk,et al.  Field Seeding Algorithm for People Counting Using KINECT Depth Image , 2016 .

[74]  Moataz M. Abdelwahab,et al.  Human action recognition and analysis algorithm for fixed and moving cameras , 2015 .

[75]  Takio Kurita,et al.  Consecutive Dimensionality Reduction by Canonical Correlation Analysis for Visualization of Convolutional Neural Networks , 2017 .

[76]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[77]  Hao Su,et al.  A Point Set Generation Network for 3D Object Reconstruction from a Single Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[78]  Sanjeev J. Koppal,et al.  Lambertian Reflectance , 2020, Computer Vision, A Reference Guide.

[79]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[80]  Andrew Zisserman,et al.  Convolutional Two-Stream Network Fusion for Video Action Recognition , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[81]  Tatsuya Harada,et al.  Neural 3D Mesh Renderer , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[82]  Heng Li,et al.  Identification of Biomechanical Risk Factors for the Development of Lower-Back Disorders during Manual Rebar Tying , 2017 .

[83]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[84]  智一 吉田,et al.  Efficient Graph-Based Image Segmentationを用いた圃場図自動作成手法の検討 , 2014 .

[85]  Liming Wang,et al.  CNN-MonoFusion: Online Monocular Dense Reconstruction Using Learned Depth from Single View , 2018, 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct).

[86]  Andrew Zisserman,et al.  Deep Face Recognition , 2015, BMVC.

[87]  Anat Levin,et al.  User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[88]  Thierry Bouwmans,et al.  Background Subtraction in Real Applications: Challenges, Current Models and Future Directions , 2019, Comput. Sci. Rev..

[89]  Stefan Leutenegger,et al.  DeepFusion: Real-Time Dense 3D Reconstruction for Monocular SLAM using Single-View Depth and Gradient Predictions , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[90]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[91]  Xiaochun Cao,et al.  Total Variation Regularized RPCA for Irregularly Moving Object Detection Under Dynamic Background , 2016, IEEE Transactions on Cybernetics.

[92]  A. P. Petrov,et al.  Properties of color images of surfaces under multiple illuminants , 1994 .

[93]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[94]  Soon Ki Jung,et al.  Tracking Noisy Targets: A Review of Recent Object Tracking Approaches , 2018, ArXiv.

[95]  Matthew Fisher,et al.  UprightNet: Geometry-Aware Camera Orientation Estimation From Single Images , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[96]  Chen Kong,et al.  Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction , 2017, AAAI.

[97]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[98]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[99]  Xiaochun Cao,et al.  Robust Foreground Detection Using Smoothness and Arbitrariness Constraints , 2014, ECCV.

[100]  Mehrbakhsh Nilashi,et al.  A hybrid intelligent system for the prediction of Parkinson's Disease progression using machine learning techniques , 2017 .

[101]  Steven M. Seitz,et al.  The Visual Turing Test for Scene Reconstruction , 2013, 2013 International Conference on 3D Vision.

[102]  Dinesh Manocha,et al.  Realtime Anomaly Detection Using Trajectory-Level Crowd Behavior Learning , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[103]  W. Heindel,et al.  Detection of pulmonary nodules at multirow-detector CT: effectiveness of double reading to improve sensitivity at standard-dose and low-dose chest CT , 2004, European Radiology.

[104]  David J. Kriegman,et al.  The Bas-Relief Ambiguity , 2004, International Journal of Computer Vision.

[105]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[106]  Paolo Cignoni,et al.  MeshLab: an Open-Source Mesh Processing Tool , 2008, Eurographics Italian Chapter Conference.

[107]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[108]  Mario Ignacio Chacon Murguia,et al.  Temporal weighted learning model for background estimation with an automatic re-initialization stage and adaptive parameters update , 2017, Pattern Recognit. Lett..

[109]  Josephine Sullivan,et al.  One millisecond face alignment with an ensemble of regression trees , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[110]  Soon Ki Jung,et al.  Unsupervised Adversarial Learning for Dynamic Background Modeling , 2020, IW-FCV.

[111]  Mark S. Drew,et al.  Closed-form attitude determination under spectrally varying illumination , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[112]  Yongtian Wang,et al.  Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery , 2010, ACCV.

[113]  Jesús Francisco Vargas-Bonilla,et al.  Characterization Methods for the Detection of Multiple Voice Disorders: Neurological, Functional, and Laryngeal Diseases , 2015, IEEE Journal of Biomedical and Health Informatics.

[114]  Clayton R. Pereira,et al.  Parkinson Disease Identification Using Residual Networks and Optimum-Path Forest , 2018, 2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI).

[115]  A. Blum,et al.  Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology , 2004, The British journal of dermatology.

[116]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[117]  Jianfei Cai,et al.  Background Subtraction Based on Deep Pixel Distribution Learning , 2018, 2018 IEEE International Conference on Multimedia and Expo (ICME).

[118]  Yair Weiss,et al.  Deriving intrinsic images from image sequences , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[119]  David Satcher,et al.  Women and smoking: a report of the Surgeon General. , 2002, Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco.

[120]  Hao Tang,et al.  Pitch and Roll Camera Orientation from a Single 2D Image Using Convolutional Neural Networks , 2017, 2017 14th Conference on Computer and Robot Vision (CRV).

[121]  Raimondo Schettini,et al.  Color constancy using CNNs , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[122]  Mark S. Drew Direct Solution of Orientation-from-Color Problem Using a Modification of Pentland's Light Source Direction Estimator , 1996, Comput. Vis. Image Underst..

[123]  Selim Benhimane,et al.  Gravity-aware handheld Augmented Reality , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[124]  G. Corrado,et al.  End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography , 2019, Nature Medicine.

[125]  Mark D. McDonnell,et al.  Understanding Data Augmentation for Classification: When to Warp? , 2016, 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[126]  Song Wang,et al.  Learning Dynamic Siamese Network for Visual Object Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[127]  Jorge S. Marques,et al.  Improving Dermoscopy Image Classification Using Color Constancy , 2015, IEEE Journal of Biomedical and Health Informatics.

[128]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[129]  Eduardo Valle,et al.  Towards Automated Melanoma Screening: Exploring Transfer Learning Schemes , 2016, ArXiv.

[130]  Jun Rekimoto,et al.  Post-Data Augmentation to Improve Deep Pose Estimation of Extreme and Wild Motions , 2019, 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).

[131]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[132]  Achim Hekler,et al.  Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark. , 2019, European journal of cancer.

[133]  Manuel Menezes de Oliveira Neto,et al.  Shared Sampling for Real‐Time Alpha Matting , 2010, Comput. Graph. Forum.

[134]  Harry Shum,et al.  Principal Component Analysis with Missing Data and Its Application to Polyhedral Object Modeling , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[135]  Björn Stenger,et al.  Video Normals from Colored Lights , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[136]  Wolfram Burgard,et al.  Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[137]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[138]  Sina Honari,et al.  Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[139]  Katsushi Ikeuchi,et al.  Illumination normalization with time-dependent intrinsic images for video surveillance , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[140]  Wei Liu,et al.  Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images , 2018, ECCV.

[141]  Tao Mei,et al.  Joint Detection and Recounting of Abnormal Events by Learning Deep Generic Knowledge , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[142]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[143]  William T. Freeman,et al.  Learning Local Evidence for Shading and Reflectance , 2001, ICCV.

[144]  Carsten Steger,et al.  MVTec AD — A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[145]  Yu Qiao,et al.  Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks , 2016, IEEE Signal Processing Letters.

[146]  Takahiro Okabe,et al.  Spherical harmonics vs. Haar wavelets: basis for recovering illumination from cast shadows , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[147]  Lavanya Sharma,et al.  Performance analysis of moving object detection using BGS techniques in visual surveillance , 2019, International Journal of Spatio-Temporal Data Science.

[148]  Ronan Collobert,et al.  Learning to Refine Object Segments , 2016, ECCV.

[149]  Masahiro Yamaguchi,et al.  In-Plane Rotation-Aware Monocular Depth Estimation Using SLAM , 2020, IW-FCV.

[150]  Steven Euijong Whang,et al.  A Survey on Data Collection for Machine Learning: A Big Data - AI Integration Perspective , 2018, IEEE Transactions on Knowledge and Data Engineering.

[151]  N. Arunkumar,et al.  Examining multiple feature evaluation and classification methods for improving the diagnosis of Parkinson’s disease , 2019, Cognitive Systems Research.

[152]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[153]  Anders P. Eriksson,et al.  Image2Mesh: A Learning Framework for Single Image 3D Reconstruction , 2017, ACCV.

[154]  Rui Wang,et al.  Static and Moving Object Detection Using Flux Tensor with Split Gaussian Models , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[155]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[156]  Paul E. Debevec,et al.  Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography , 1998, SIGGRAPH '08.

[157]  Dilip K Prasad,et al.  Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[158]  Katsushi Ikeuchi,et al.  Illumination from Shadows , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[159]  Lihi Zelnik-Manor,et al.  Saliency Driven Image Manipulation , 2018, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[160]  Nacim Betrouni,et al.  Electroencephalography‐based machine learning for cognitive profiling in Parkinson's disease: Preliminary results , 2018, Movement disorders : official journal of the Movement Disorder Society.

[161]  Chu-Song Chen,et al.  Face Recognition and Retrieval Using Cross-Age Reference Coding With Cross-Age Celebrity Dataset , 2015, IEEE Transactions on Multimedia.

[162]  Jonathon Shlens,et al.  Conditional Image Synthesis with Auxiliary Classifier GANs , 2016, ICML.

[163]  Andrea Vedaldi,et al.  Deep Image Prior , 2017, International Journal of Computer Vision.

[164]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[165]  Drew,et al.  Color from shape from color: a simple formalism with known light sources , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[166]  Cewu Lu,et al.  RMPE: Regional Multi-person Pose Estimation , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[167]  Katsushi Ikeuchi,et al.  Separating reflection components of textured surfaces using a single image , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[168]  Xiaogang Wang,et al.  DeepID3: Face Recognition with Very Deep Neural Networks , 2015, ArXiv.

[169]  Shai Avidan,et al.  Support vector tracking , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[170]  Antoine Doucet,et al.  A Comparative Study for Classification of Skin Cancer , 2019, 2019 International Conference on System Science and Engineering (ICSSE).

[171]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[172]  Cewu Lu,et al.  Inverse-Transform AutoEncoder for Anomaly Detection , 2019, ArXiv.

[173]  Carlo Gatta,et al.  A new algorithm for unsupervised global and local color correction , 2003, Pattern Recognit. Lett..

[174]  Zhiming Luo,et al.  Interactive deep learning method for segmenting moving objects , 2017, Pattern Recognit. Lett..

[175]  Nassir Navab,et al.  Deeper Depth Prediction with Fully Convolutional Residual Networks , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[176]  Ling Shao,et al.  Generalized Pooling for Robust Object Tracking , 2016, IEEE Transactions on Image Processing.

[177]  Xiaogang Wang,et al.  StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[178]  Bertrand Vachon,et al.  Statistical Background Modeling for Foreground Detection: A Survey , 2010 .

[179]  Thierry Bouwmans,et al.  Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance , 2014, Comput. Vis. Image Underst..

[180]  Thomas Brox,et al.  Image Orientation Estimation with Convolutional Networks , 2015, GCPR.

[181]  Jiajun Wu,et al.  Synthesizing 3D Shapes via Modeling Multi-view Depth Maps and Silhouettes with Deep Generative Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[182]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[183]  Soon Ki Jung,et al.  Spatiotemporal Low-Rank Modeling for Complex Scene Background Initialization , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[184]  Mengying Shu,et al.  Deep learning for image classification on very small datasets using transfer learning , 2019 .

[185]  Minh N. Do,et al.  Semantic Image Inpainting with Deep Generative Models , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[186]  Mohamed A. Abdelwahab Accurate Vehicle Counting Approach Based on Deep Neural Networks , 2019, 2019 International Conference on Innovative Trends in Computer Engineering (ITCE).

[187]  Gerhard Rigoll,et al.  A deep convolutional neural network for video sequence background subtraction , 2018, Pattern Recognit..

[188]  Yanning Zhang,et al.  Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT , 2018, Inf. Fusion.

[189]  Imari Sato,et al.  Color Photometric Stereo Using a Rainbow Light for Non-Lambertian Multicolored Surfaces , 2014, ACCV.

[190]  Yan Wang,et al.  Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[191]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[192]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[193]  Jean-Yves Guillemaut,et al.  Colour Helmholtz Stereopsis for Reconstruction of Complex Dynamic Scenes , 2014, 2014 2nd International Conference on 3D Vision.

[194]  Moshe Ben-Ezra,et al.  Photometric Stereo for Dynamic Surface Orientations , 2010, ECCV.

[195]  Georg Langs,et al.  f‐AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks , 2019, Medical Image Anal..

[196]  J H van Dieën,et al.  Stoop or squat: a review of biomechanical studies on lifting technique. , 1999, Clinical biomechanics.

[197]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[198]  Ravi Kiran Sarvadevabhatla,et al.  DeLiGAN: Generative Adversarial Networks for Diverse and Limited Data , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[199]  Andreas Krause,et al.  Submodular Function Maximization , 2014, Tractability.

[200]  Katsushi Ikeuchi,et al.  Radiometric Calibration by Rank Minimization , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[201]  Elmar Nöth,et al.  Automated Cross-language Intelligibility Analysis of Parkinson’s Disease Patients Using Speech Recognition Technologies , 2019, ACL.

[202]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[203]  Mao Ye,et al.  Age invariant face recognition and retrieval by coupled auto-encoder networks , 2017, Neurocomputing.

[204]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[205]  Dimitris N. Metaxas,et al.  StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[206]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[207]  Xin Zhao,et al.  GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[208]  Takahiro Okabe,et al.  Does Inverse Lighting Work Well under Unknown Response Function? , 2015, VISAPP.

[209]  Shubhra Aich,et al.  Object Counting with Small Datasets of Large Images , 2018, ArXiv.

[210]  Hasan Sakir Bilge,et al.  Recent Trends in Deep Generative Models: a Review , 2018, 2018 3rd International Conference on Computer Science and Engineering (UBMK).

[211]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[212]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[213]  Michael J. Brooks,et al.  The variational approach to shape from shading , 1986, Comput. Vis. Graph. Image Process..

[214]  Joachim Gudmundsson,et al.  Football analysis using spatio-temporal tools , 2012, Comput. Environ. Urban Syst..

[215]  Jürgen Schmidhuber,et al.  LSTM can Solve Hard Long Time Lag Problems , 1996, NIPS.

[216]  Jiwen Lu,et al.  Discriminative Deep Metric Learning for Face Verification in the Wild , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[217]  Graham Fyffe,et al.  Single-shot photometric stereo by spectral multiplexing , 2010, 2011 IEEE International Conference on Computational Photography (ICCP).

[218]  Tali Dekel,et al.  SinGAN: Learning a Generative Model From a Single Natural Image , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[219]  Kazushige OUCHI,et al.  Development of Rugby Video Analysis System , 2017 .

[220]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[221]  Katsushi Ikeuchi,et al.  Photometric stereo under unknown light sources using robust SVD with missing data , 2010, 2010 IEEE International Conference on Image Processing.

[222]  Jun Li,et al.  An Intelligent Parkinson's Disease Diagnostic System Based on a Chaotic Bacterial Foraging Optimization Enhanced Fuzzy KNN Approach , 2018, Comput. Math. Methods Medicine.

[223]  Silvio Savarese,et al.  3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction , 2016, ECCV.

[224]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[225]  Edward H. Adelson,et al.  Recovering intrinsic images from a single image , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[226]  Jianbing Shen,et al.  Triplet Loss in Siamese Network for Object Tracking , 2018, ECCV.

[227]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[228]  Katsushi Ikeuchi,et al.  Numerical Shape from Shading and Occluding Boundaries , 1981, Artif. Intell..

[229]  Soon Ki Jung,et al.  Unsupervised deep context prediction for background estimation and foreground segmentation , 2018, Machine Vision and Applications.

[230]  Mubarak Shah,et al.  UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild , 2012, ArXiv.

[231]  Chao-Ho Chen,et al.  An early fire-detection method based on image processing , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[232]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[233]  Jian Sun,et al.  Statistics of Patch Offsets for Image Completion , 2012, ECCV.

[234]  Kavita Bala,et al.  Learning visual similarity for product design with convolutional neural networks , 2015, ACM Trans. Graph..

[235]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[236]  Takeshi Shakunaga,et al.  Direct Bundle Estimation for Recovery of Shape, Reflectance Property and Light Position , 2008, ECCV.

[237]  Kang-Hyun Jo,et al.  Evaluation of background subtraction algorithms for video surveillance , 2015, 2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV).

[238]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.

[239]  Erika Avila-Tang,et al.  Lung Cancer Occurrence in Never-Smokers: An Analysis of 13 Cohorts and 22 Cancer Registry Studies , 2008, PLoS medicine.

[240]  Leon Straker,et al.  In vivo laboratory validation of the physiometer: a measurement system for long-term recording of posture and movements in the workplace , 2010, Ergonomics.

[241]  James M. Rehg,et al.  GOSUS: Grassmannian Online Subspace Updates with Structured-Sparsity , 2013, 2013 IEEE International Conference on Computer Vision.

[242]  Shinsaku Hiura,et al.  Color Photometric Stereo Using Multi-Band Camera Constrained by Median Filter and Occluding Boundary , 2019, J. Imaging.

[243]  Yong Liu,et al.  AnomalyNet: An Anomaly Detection Network for Video Surveillance , 2019, IEEE Transactions on Information Forensics and Security.

[244]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[245]  Takeshi Shakunaga,et al.  Analysis of photometric factors based on photometric linearization. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[246]  Roberto Cipolla,et al.  Modelling uncertainty in deep learning for camera relocalization , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[247]  Vibhakar Pathak,et al.  Parkinson Disease Prediction Using Machine Learning Algorithm , 2018, Advances in Intelligent Systems and Computing.

[248]  Jiri Matas,et al.  Discriminative Correlation Filter with Channel and Spatial Reliability , 2017, CVPR.

[249]  Zhe Wu,et al.  A Benchmark Dataset and Evaluation for Non-Lambertian and Uncalibrated Photometric Stereo , 2019, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[250]  Jean-Denis Durou,et al.  Normal Integration: A Survey , 2017, Journal of Mathematical Imaging and Vision.

[251]  Marc Van Droogenbroeck,et al.  LaBGen-P-Semantic: A First Step for Leveraging Semantic Segmentation in Background Generation , 2018, J. Imaging.

[252]  Zhen Cui,et al.  Recurrently Target-Attending Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[253]  Li Fei-Fei,et al.  Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos , 2015, International Journal of Computer Vision.

[254]  Moataz M. Abdelwahab,et al.  A Novel Algorithm for Vehicle Detection and Tracking in Airborne Videos , 2015, 2015 IEEE International Symposium on Multimedia (ISM).

[255]  Kang-Hyun Jo,et al.  Study of GANs Using a Few Images for Sealer Inspection Systems , 2020, IW-FCV.

[256]  Graeme Brooker,et al.  Re-readings: Volume 2. Interior Architecture and the Principles of Remodelling Existing Buildings , 2017 .

[257]  L. L. Reconstruction of shape from shading in color images , .

[258]  Abdelaziz Ouamri,et al.  Road traffic density estimation using microscopic and macroscopic parameters , 2013, Image Vis. Comput..

[259]  L McAtamney,et al.  RULA: a survey method for the investigation of work-related upper limb disorders. , 1993, Applied ergonomics.

[260]  Jitendra Malik,et al.  Hypercolumns for object segmentation and fine-grained localization , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[261]  Raymond Y. K. Lau,et al.  Least Squares Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[262]  Zhengyou Zhang,et al.  Camera calibration with one-dimensional objects , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[263]  Robert W. G. Hunt,et al.  The reproduction of colour , 1957 .

[264]  Shoab A. Khan,et al.  Traffic congestion classification using motion vector statistical features , 2013, Other Conferences.

[265]  Kirk Goldsberry,et al.  A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes , 2014, 1408.0777.

[266]  Björn Stenger,et al.  Color photometric stereo for multicolored surfaces , 2011, 2011 International Conference on Computer Vision.

[267]  Wataru Ohyama,et al.  Segmented face image verification for age-invariant face recognition , 2017, 2017 6th International Conference on Informatics, Electronics and Vision & 2017 7th International Symposium in Computational Medical and Health Technology (ICIEV-ISCMHT).

[268]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[269]  Narrendar RaviChandran,et al.  Feature-driven machine learning to improve early diagnosis of Parkinson's disease , 2018, Expert Syst. Appl..

[270]  Sharath Pankanti,et al.  Deep learning ensembles for melanoma recognition in dermoscopy images , 2016, IBM J. Res. Dev..

[271]  Odemir Martinez Bruno,et al.  Dynamic texture analysis with diffusion in networks , 2018, Digit. Signal Process..

[272]  Anthony Rowe,et al.  Real-Time Fine Grained Occupancy Estimation Using Depth Sensors on ARM Embedded Platforms , 2017, 2017 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).

[273]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[274]  K. Rajeswari,et al.  Lung Cancer Detection and Classification Using Deep Learning , 2018, 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA).

[275]  Andreas Krause,et al.  Near-optimal sensor placements in Gaussian processes , 2005, ICML.

[276]  William T. Freeman,et al.  Boundless: Generative Adversarial Networks for Image Extension , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[277]  Mark S. Drew Reduction of rank-reduced orientation-from-color problem with many unknown lights to two-image known-illuminant photometric stereo , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[278]  Sanyuan Zhang,et al.  Vehicles detection in Traffic Flow , 2010, 2010 Sixth International Conference on Natural Computation.

[279]  Emanuele Frontoni,et al.  Convolutional Networks for Semantic Heads Segmentation using Top-View Depth Data in Crowded Environment , 2018, 2018 24th International Conference on Pattern Recognition (ICPR).

[280]  Yaser Sheikh,et al.  Photogeometric Scene Flow for High-Detail Dynamic 3D Reconstruction , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[281]  Jonghyun Choi,et al.  Learning Temporal Regularity in Video Sequences , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[282]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[283]  Håkan Jonsson,et al.  Sub-Millimeter Crack Detection in Casted Steel Using Color Photometric Stereo , 2013, 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[284]  Edwin Olson,et al.  AprilCal: Assisted and repeatable camera calibration , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[285]  Andrew Zisserman,et al.  Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[286]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[287]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[288]  Hao Wang,et al.  Training-Free Uncertainty Estimation for Neural Networks , 2019, ArXiv.

[289]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[290]  Masashi Nishiyama,et al.  Temporal and Spatial Analysis of Local Body Sway Movements for the Identification of People , 2019, IEICE Trans. Inf. Syst..

[291]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[292]  Haibin Ling,et al.  SANet: Structure-Aware Network for Visual Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[293]  Anil K. Jain,et al.  A Discriminative Model for Age Invariant Face Recognition , 2011, IEEE Transactions on Information Forensics and Security.

[294]  Zhiming Luo,et al.  Traffic analysis without motion features , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[295]  Oscar C. Au,et al.  Automatic white balancing using luminance component and standard deviation of RGB components [image preprocessing] , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[296]  J. C. Vásquez-Correa,et al.  Towards an automatic evaluation of the dysarthria level of patients with Parkinson's disease. , 2018, Journal of communication disorders.

[297]  Bir Bhanu,et al.  Individual recognition using gait energy image , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[298]  Shiru Qu,et al.  Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition , 2017 .

[299]  Erik Blasch,et al.  Encoding color information for visual tracking: Algorithms and benchmark , 2015, IEEE Transactions on Image Processing.

[300]  Zhe Wang,et al.  A Two-Stage Method for Skin Lesion Analysis , 2018 .

[301]  Xuelong Li,et al.  A maximum entropy feature descriptor for age invariant face recognition , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[302]  Alex Graves,et al.  Recurrent Models of Visual Attention , 2014, NIPS.

[303]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[304]  Jian Yang,et al.  Selective Kernel Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[305]  Takio Kurita,et al.  Multi instance learning via deep CNN for multi-class recognition of Alzheimer's disease , 2019, 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA).

[306]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[307]  Junyu Dong,et al.  Underwater multi-spectral photometric stereo reconstruction from a single RGBD image , 2016, 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA).

[308]  Marc Van Droogenbroeck,et al.  Deep background subtraction with scene-specific convolutional neural networks , 2016, 2016 International Conference on Systems, Signals and Image Processing (IWSSIP).

[309]  Marc Van Droogenbroeck,et al.  Semantic background subtraction , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[310]  Iván González-Díaz,et al.  Incorporating the Knowledge of Dermatologists to Convolutional Neural Networks for the Diagnosis of Skin Lesions , 2017, ArXiv.

[311]  Lucia Maddalena,et al.  Towards Benchmarking Scene Background Initialization , 2015, ICIAP Workshops.

[312]  Kang-Hyun Jo,et al.  Dense optical flow in stabilized scenes for moving object detection from a moving camera , 2016, 2016 16th International Conference on Control, Automation and Systems (ICCAS).

[313]  Jun Li,et al.  Im2Struct: Recovering 3D Shape Structure from a Single RGB Image , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[314]  Barr,et al.  Superquadrics and Angle-Preserving Transformations , 1981, IEEE Computer Graphics and Applications.

[315]  Tinne Tuytelaars,et al.  Rank Pooling for Action Recognition , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[316]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[317]  Jian Sun,et al.  Blessing of Dimensionality: High-Dimensional Feature and Its Efficient Compression for Face Verification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[318]  Sajid Javed,et al.  Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery , 2017, IEEE Signal Processing Magazine.

[319]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[320]  Si Chen,et al.  Siamese Networks with Discriminant Correlation Filters and Channel Attention , 2018, 2018 14th International Conference on Computational Intelligence and Security (CIS).

[321]  Emil Slusanschi,et al.  SafeUAV: Learning to Estimate Depth and Safe Landing Areas for UAVs from Synthetic Data , 2018, ECCV Workshops.

[322]  Liqing Zhang,et al.  Bayesian Robust Tensor Factorization for Incomplete Multiway Data , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[323]  Yiying Tong,et al.  Age-Invariant Face Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[324]  F. Porikli,et al.  Traffic congestion estimation using HMM models without vehicle tracking , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[325]  Björn Stenger,et al.  Non-rigid Photometric Stereo with Colored Lights , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[326]  Rafael Grompone von Gioi,et al.  LSD: A Fast Line Segment Detector with a False Detection Control , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[327]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[328]  Ezzeddine Zagrouba,et al.  Abnormal behavior recognition for intelligent video surveillance systems: A review , 2018, Expert Syst. Appl..

[329]  Roberto Cipolla,et al.  PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[330]  Jitendra Malik,et al.  Learning a Multi-View Stereo Machine , 2017, NIPS.

[331]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[332]  Kosuke Sato,et al.  Photometric Linearization by Robust PCA for Shadow and Specular Removal , 2012, VISIGRAPP.

[333]  Andrew M. Dai,et al.  Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step , 2017, ICLR.

[334]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[335]  Takeru Miyato,et al.  cGANs with Projection Discriminator , 2018, ICLR.

[336]  Ming Yang,et al.  3D Convolutional Neural Networks for Human Action Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[337]  Jean-Denis Durou,et al.  Unbiased Photometric Stereo for Colored Surfaces: A Variational Approach , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[338]  S. Robinson,et al.  Parameter estimation for a computable general equilibrium model: a maximum entropy approach , 2002 .

[339]  Jitendra Malik,et al.  Learning Category-Specific Mesh Reconstruction from Image Collections , 2018, ECCV.

[340]  Jia Deng,et al.  Stacked Hourglass Networks for Human Pose Estimation , 2016, ECCV.

[341]  Michael Felsberg,et al.  Convolutional Features for Correlation Filter Based Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[342]  Kang-Hyun Jo,et al.  Faster R-CNN with Attention Feature Map for Robust Object Detection , 2020, IW-FCV.

[343]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[344]  R. H. Moss,et al.  Neural network diagnosis of malignant melanoma from color images , 1994, IEEE Transactions on Biomedical Engineering.

[345]  Xiaowei Zhou,et al.  Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[346]  Arif Mahmood,et al.  Handcrafted and Deep Trackers , 2018, ACM Comput. Surv..

[347]  Michael A. Wirth,et al.  Applicability of White-Balancing Algorithms to Restoring Faded Colour Slides: An Empirical Evaluation , 2008, J. Multim..

[348]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[349]  Hiroshi Koga,et al.  Image Classification of Melanoma, Nevus and Seborrheic Keratosis by Deep Neural Network Ensemble , 2017, ArXiv.

[350]  Chris Baber,et al.  Ecological Interface Design, the Proximity Compatibility Principle, and Automation Reliability in Road Traffic Management , 2019, IEEE Transactions on Human-Machine Systems.

[351]  Helen Hong,et al.  Automatic lung nodule matching on sequential CT images , 2008, Comput. Biol. Medicine.

[352]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[353]  N. Arunkumar,et al.  Optimal deep learning model for classification of lung cancer on CT images , 2019, Future Gener. Comput. Syst..

[354]  Kwang-Yeob Lee,et al.  Wavelet-based vehicle tracking for automatic traffic surveillance , 2001, Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239).

[355]  Kunihito Kato,et al.  Consistency Ensured Bi-directional GAN for Anomaly Detection , 2020, IW-FCV.

[356]  Yasushi Makihara,et al.  Pedestrian Detection by Using a Spatio-Temporal Histogram of Oriented Gradients , 2013, IEICE Trans. Inf. Syst..

[357]  Mubarak Shah,et al.  Real-World Anomaly Detection in Surveillance Videos , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[358]  Jae-Sung Bae,et al.  Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells , 2017, PloS one.

[359]  Satarupa Mukherjee,et al.  Anovel framework for automatic passenger counting , 2011, 2011 18th IEEE International Conference on Image Processing.

[360]  Ahmed Mamdouh,et al.  Vehicles detection and tracking in videos for very crowded scenes , 2013, MVA.

[361]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[362]  Rogério Schmidt Feris,et al.  A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection , 2016, ECCV.

[363]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[364]  Yaser Sheikh,et al.  OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[365]  Roberto Cipolla,et al.  Shadows in Three-Source Photometric Stereo , 2008, ECCV.

[366]  Fuchun Sun,et al.  HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[367]  Juan Ignacio Godino-Llorente,et al.  A forced gaussians based methodology for the differential evaluation of Parkinson's Disease by means of speech processing , 2019, Biomed. Signal Process. Control..

[368]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[369]  Huchuan Lu,et al.  Deep visual tracking: Review and experimental comparison , 2018, Pattern Recognit..

[370]  Emanuele Ghelfi,et al.  A Survey on GANs for Anomaly Detection , 2019, ArXiv.

[371]  Subrahmanyam Murala,et al.  FgGAN: A Cascaded Unpaired Learning for Background Estimation and Foreground Segmentation , 2019, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[372]  Guillaume-Alexandre Bilodeau,et al.  Universal Background Subtraction Using Word Consensus Models , 2016, IEEE Transactions on Image Processing.

[373]  Masatoshi Okutomi,et al.  Multi-view Inverse Rendering Under Arbitrary Illumination and Albedo , 2016, ECCV.

[374]  Chen Kong,et al.  Using Locally Corresponding CAD Models for Dense 3D Reconstructions from a Single Image , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[375]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[376]  Yuichi Yoshida,et al.  Spectral Normalization for Generative Adversarial Networks , 2018, ICLR.

[377]  Elmar Nöth,et al.  Unobtrusive Monitoring of Speech Impairments of Parkinson'S Disease Patients Through Mobile Devices , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[378]  Wolfram Burgard,et al.  Supervised semantic labeling of places using information extracted from sensor data , 2007, Robotics Auton. Syst..

[379]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[380]  Yohan Dupuis,et al.  A Survey of Vision-Based Traffic Monitoring of Road Intersections , 2016, IEEE Transactions on Intelligent Transportation Systems.

[381]  Steve Marschner,et al.  Inverse Lighting for Photography , 1997, CIC.

[382]  Kang-Hyun Jo,et al.  Probabilistic foreground detector for sterile zone monitoring , 2015, 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[383]  Mark S. Drew,et al.  Recovering Shading from Color Images , 1992, ECCV.

[384]  Jun Fu,et al.  Dual Attention Network for Scene Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[385]  James Diebel,et al.  Representing Attitude : Euler Angles , Unit Quaternions , and Rotation Vectors , 2006 .

[386]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[387]  Kang-Hyun Jo,et al.  Dilated CNN Based Human Verifier for Intrusion Detection , 2020, IW-FCV.

[388]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[389]  Yiannis Demiris,et al.  Visual Tracking Using Attention-Modulated Disintegration and Integration , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[390]  Arun Ross,et al.  Fusing MFCC and LPC Features Using 1D Triplet CNN for Speaker Recognition in Severely Degraded Audio Signals , 2020, IEEE Transactions on Information Forensics and Security.

[391]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[392]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[393]  E.Y. Lam,et al.  Combining gray world and retinex theory for automatic white balance in digital photography , 2005, Proceedings of the Ninth International Symposium on Consumer Electronics, 2005. (ISCE 2005)..

[394]  Chuan Sheng Foo,et al.  Efficient GAN-Based Anomaly Detection , 2018, ArXiv.

[395]  Dacheng Tao,et al.  Deep Ordinal Regression Network for Monocular Depth Estimation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[396]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[397]  Subhransu Maji,et al.  Object segmentation by alignment of poselet activations to image contours , 2011, CVPR 2011.

[398]  Baocai Yin,et al.  Extrinsic Least Squares Regression with Closed-Form Solution on Product Grassmann Manifold for Video-Based Recognition , 2018 .

[399]  Michael Felsberg,et al.  The Visual Object Tracking VOT2017 Challenge Results , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[400]  Nassir Navab,et al.  Single Camera Calibration using partially visible calibration objects based on Random Dots Marker Tracking Algorithm , 2012 .

[401]  Soon Ki Jung,et al.  Convolutional neural network with structural input for visual object tracking , 2019, SAC.

[402]  Kalyan Sunkavalli,et al.  Single-Image RGB Photometric Stereo with Spatially-Varying Albedo , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[403]  George K. Thiruvathukal,et al.  Comparison of Visual Datasets for Machine Learning , 2017, 2017 IEEE International Conference on Information Reuse and Integration (IRI).

[404]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[405]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[406]  Chong Luo,et al.  A Twofold Siamese Network for Real-Time Object Tracking , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[407]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[408]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[409]  Carlos Hernández,et al.  Practical 3D Reconstruction Based on Photometric Stereo , 2010, Computer Vision: Detection, Recognition and Reconstruction.

[410]  Xiaobo Lu,et al.  WeSamBE: A Weight-Sample-Based Method for Background Subtraction , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[411]  Simone Bianco,et al.  Combination of Video Change Detection Algorithms by Genetic Programming , 2017, IEEE Transactions on Evolutionary Computation.

[412]  Sitanshu Sekhar Sahu,et al.  Parkinson disease prediction using intrinsic mode function based features from speech signal , 2020 .

[413]  M. A. Abdelwahab,et al.  Fast approach for efficient vehicle counting , 2019, Electronics Letters.

[414]  A.B. Chan,et al.  Classification and retrieval of traffic video using auto-regressive stochastic processes , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[415]  Hideo Saito,et al.  Random dot markers , 2011, 2011 IEEE Virtual Reality Conference.

[416]  Elmar Nöth,et al.  Feature Representation of Pathophysiology of Parkinsonian Dysarthria , 2019, INTERSPEECH.

[417]  Sruthi Ignatious,et al.  Computer aided lung cancer detection system , 2015, 2015 Global Conference on Communication Technologies (GCCT).

[418]  Soon Ki Jung,et al.  Background–Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering , 2017, IEEE Transactions on Image Processing.

[419]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[420]  D. Burns,et al.  Primary prevention, smoking, and smoking cessation , 2000, Cancer.

[421]  Paul R. Cohen,et al.  Camera Calibration with Distortion Models and Accuracy Evaluation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[422]  Carlo Tomasi Camera Calibration , 2002 .

[423]  Kapil Bharti,et al.  Regenerating Retinal Pigment Epithelial Cells to Cure Blindness: A Road Towards Personalized Artificial Tissue , 2015, Current Stem Cell Reports.

[424]  Z. Zivkovic Improved adaptive Gaussian mixture model for background subtraction , 2004, ICPR 2004.

[425]  Aysegul Gunduz,et al.  A comparative analysis of speech signal processing algorithms for Parkinson's disease classification and the use of the tunable Q-factor wavelet transform , 2019, Appl. Soft Comput..

[426]  Katsushi Ikeuchi,et al.  Acquiring a Radiance Distribution to Superimpose Virtual Objects onto Real Scene , 2001, MVA.

[427]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[428]  Lili Huang,et al.  Real-time multi-vehicle tracking based on feature detection and color probability model , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[429]  Fatih Murat Porikli,et al.  CDnet 2014: An Expanded Change Detection Benchmark Dataset , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[430]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[431]  Federico Tombari,et al.  CNN-SLAM: Real-Time Dense Monocular SLAM with Learned Depth Prediction , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[432]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[433]  John Paoli,et al.  Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks , 2019, JAMA dermatology.