The generation of receptive-field structure in cat primary visual cortex.

Cells in primary visual cortex show a remarkable variety of receptive-field structures. In spite of the extensive experimental and theoretical effort over the past 50 years, it has been difficult to establish how this diversity of functional-response properties emerges in the cortex. One of the reasons is that while functional studies in the early visual pathway have been usually carried out in vivo with extracellular recording techniques, investigations about the precise structure of the cortical network have mainly been conducted in vitro. Thus, the link between structure and function has rarely been explicitly established, remaining a well-known controversial issue. In this chapter, I review recent data that simultaneously combines anatomy with physiology at the intracellular level; trying to understand how the primary visual cortex transforms the information it receives from the thalamus to generate receptive-field structure, contrast-invariant orientation tuning and other functional-response properties.

[1]  I. Ohzawa,et al.  The binocular organization of complex cells in the cat's visual cortex. , 1986, Journal of neurophysiology.

[2]  G. Henry,et al.  Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. , 1979, Journal of neurophysiology.

[3]  A. Burkhalter,et al.  Conserved patterns of cortico-cortical connections define areal hierarchy in rat visual cortex , 2004, Experimental Brain Research.

[4]  K. Martin Microcircuits in visual cortex , 2002, Current Opinion in Neurobiology.

[5]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[6]  J. Alonso,et al.  Complex Receptive Fields in Primary Visual Cortex , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[7]  Trichur Raman Vidyasagar,et al.  Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  D. Tolhurst,et al.  On the distinctness of simple and complex cells in the visual cortex of the cat. , 1983, The Journal of physiology.

[9]  L. Abbott,et al.  Rethinking the taxonomy of visual neurons , 2002, Nature Neuroscience.

[10]  P. Lennie,et al.  Spatial frequency analysis in the visual system. , 1985, Annual review of neuroscience.

[11]  R. Shapley,et al.  An egalitarian network model for the emergence of simple and complex cells in visual cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[13]  J. B. Levitt,et al.  Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. , 2002, Progress in brain research.

[14]  Rodney Cotterill,et al.  Models of brain function , 1989 .

[15]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[16]  R. Shapley,et al.  Receptive field mechanisms of cat X and Y retinal ganglion cells , 1979, The Journal of general physiology.

[17]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[18]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[19]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[20]  L. Palmer,et al.  Visual receptive fields of single striate corical units projecting to the superior colliculus in the cat. , 1974, Brain research.

[21]  Shigeru Tanaka,et al.  Spatial pooling in the second-order spatial structure of cortical complex cells , 2000, Vision Research.

[22]  Nicholas J Priebe,et al.  A New Mechanism for Neuronal Gain Control (or How the Gain in Brains Has Mainly Been Explained) , 2002, Neuron.

[23]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[24]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[25]  P Lennie,et al.  The control of retinal ganglion cell discharge by receptive field surrounds. , 1975, The Journal of physiology.

[26]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[27]  D. Ringach,et al.  Spatial overlap of ON and OFF subregions and its relation to response modulation ratio in macaque primary visual cortex. , 2005, Journal of neurophysiology.

[28]  Wyeth Bair,et al.  Visual receptive field organization , 2005, Current Opinion in Neurobiology.

[29]  C. Enroth-Cugell,et al.  Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. , 1984, Investigative ophthalmology & visual science.

[30]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[31]  T. Wiesel,et al.  The Sharpey-Schafer lecture. Morphological basis of visual cortical function. , 1983, Quarterly journal of experimental physiology.

[32]  M. Sur,et al.  Invariant computations in local cortical networks with balanced excitation and inhibition , 2005, Nature Neuroscience.

[33]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[34]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[36]  G. Henry Receptive field classes of cells in the striate cortex of the cat , 1977, Brain Research.

[37]  Nicholas J. Priebe,et al.  The contribution of spike threshold to the dichotomy of cortical simple and complex cells , 2004, Nature Neuroscience.

[38]  J. Touryan,et al.  Spatial Structure of Complex Cell Receptive Fields Measured with Natural Images , 2005, Neuron.

[39]  J. Alonso,et al.  Construction of Complex Receptive Fields in Cat Primary Visual Cortex , 2001, Neuron.

[40]  Christoph Kayser,et al.  Learning the invariance properties of complex cells from their responses to natural stimuli , 2002, The European journal of neuroscience.

[41]  A. B. Bonds,et al.  GABAB-receptor-mediated inhibition reduces the orientation selectivity of the sustained response of striate cortical neurons in cats , 1996, Visual Neuroscience.

[42]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[43]  D. Pollen,et al.  Space-time spectra of complex cell filters in the macaque monkey: A comparison of results obtained with pseudowhite noise and grating stimuli , 1994, Visual Neuroscience.

[44]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[45]  Michael Shelley,et al.  How Simple Cells Are Made in a Nonlinear Network Model of the Visual Cortex , 2001, The Journal of Neuroscience.

[46]  D. Fitzpatrick The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. , 1996, Cerebral cortex.

[47]  G. Henry,et al.  Ordinal position of neurons in cat striate cortex. , 1979, Journal of neurophysiology.

[48]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[49]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[50]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[51]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[52]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[53]  Aapo Hyvärinen,et al.  A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images , 2001, Vision Research.

[54]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[55]  M Sur,et al.  Specific Roles of NMDA and AMPA Receptors in Direction-Selective and Spatial Phase-Selective Responses in Visual Cortex , 2001, The Journal of Neuroscience.

[56]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[57]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[58]  M. Carandini,et al.  Predictions of a recurrent model of orientation selectivity , 1997, Vision Research.

[59]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Movshon,et al.  Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[61]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[62]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[63]  A. L. Humphrey,et al.  Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17. , 1999, Journal of neurophysiology.

[64]  G. DeAngelis,et al.  Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. , 1997, Journal of neurophysiology.

[65]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[66]  I. Ohzawa,et al.  Neural mechanisms for processing binocular information II. Complex cells. , 1999, Journal of neurophysiology.

[67]  G. Henry,et al.  Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey , 1979, The Journal of comparative neurology.

[68]  Luis M Martinez,et al.  Synaptic physiology of the flow of information in the cat's visual cortex in vivo , 2002, The Journal of physiology.

[69]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[70]  D. Whitteridge,et al.  Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex , 2004, Experimental Brain Research.

[71]  C. Gilbert Microcircuitry of the visual cortex. , 1983, Annual review of neuroscience.

[72]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[73]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[74]  L. Martinez,et al.  Circuits that build visual cortical receptive fields , 2006, Trends in Neurosciences.

[75]  Y. Frégnac,et al.  Activity‐dependent regulation of ‘on’ and ‘off’ responses in cat visual cortical receptive fields , 1998, The Journal of physiology.

[76]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[77]  J. A. Hirsch Synaptic physiology and receptive field structure in the early visual pathway of the cat. , 2003, Cerebral cortex.

[78]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[79]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[80]  A. B. Bonds,et al.  Classifying simple and complex cells on the basis of response modulation , 1991, Vision Research.

[81]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[82]  T. Wiesel,et al.  Recording Inhibition and Excitation in the Cat's Retinal Ganglion Cells with Intracellular Electrodes , 1959, Nature.

[83]  David J. Fleet,et al.  Neural encoding of binocular disparity: Energy models, position shifts and phase shifts , 1996, Vision Research.

[84]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[85]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[86]  R. Reid,et al.  Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex , 2001, The Journal of Neuroscience.

[87]  L C Katz,et al.  Local circuitry of identified projection neurons in cat visual cortex brain slices , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[89]  Gregory C. DeAngelis,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[90]  B. Connors,et al.  Efficacy of Thalamocortical and Intracortical Synaptic Connections Quanta, Innervation, and Reliability , 1999, Neuron.

[91]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[92]  K. Tanaka,et al.  Organization of cat visual cortex as investigated by cross-correlation technique. , 1981, Journal of neurophysiology.

[93]  C. A. Gallagher,et al.  Ascending Projections of Simple and Complex Cells in Layer 6 of the Cat Striate Cortex , 1998, The Journal of Neuroscience.

[94]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[95]  D. Ringach,et al.  On the classification of simple and complex cells , 2002, Vision Research.

[96]  D. Ferster,et al.  Prediction of Orientation Selectivity from Receptive Field Architecture in Simple Cells of Cat Visual Cortex , 2001, Neuron.

[97]  W. Usrey,et al.  Receptive fields and response properties of neurons in layer 4 of ferret visual cortex. , 2003, Journal of neurophysiology.

[98]  Dario L. Ringach,et al.  Role of Global and Tuned Suppression Dynamics of Orientation Tuning in Macaque V 1 : The , 2003 .

[99]  C. Baker,et al.  Spatial receptive-field properties of direction-selective neurons in cat striate cortex. , 1986, Journal of neurophysiology.

[100]  H B Barlow,et al.  Threshold setting by the surround of cat retinal ganglion cells. , 1976, The Journal of physiology.

[101]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[102]  ROBERT SHAPLEY,et al.  Visual spatial summation in two classes of geniculate cells , 1975, Nature.

[103]  L. Palmer,et al.  Receptive-field structure in cat striate cortex. , 1981, Journal of neurophysiology.

[104]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[105]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[106]  田中 啓治 Organization of Geniculate Inputs to Visual Cortical Cells in the Cat , 1986 .

[107]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[108]  D. Snodderly,et al.  Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings. , 2002, Journal of neurophysiology.

[109]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[111]  I. Ohzawa,et al.  Neural mechanisms for processing binocular information I. Simple cells. , 1999, Journal of neurophysiology.

[112]  B. B. Lee,et al.  A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. , 1985, The Journal of physiology.

[113]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[114]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[115]  H. K. Hartline,et al.  THE RESPONSE OF SINGLE OPTIC NERVE FIBERS OF THE VERTEBRATE EYE TO ILLUMINATION OF THE RETINA , 1938 .

[116]  Ning Qian,et al.  Physiological computation of binocular disparity , 1997, Vision Research.

[117]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[118]  D. Ringach Mapping receptive fields in primary visual cortex , 2004, The Journal of physiology.

[119]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[120]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[121]  R Clay Reid,et al.  Laminar processing of stimulus orientation in cat visual cortex , 2002, The Journal of physiology.

[122]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[123]  D. Ferster,et al.  Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex , 2001, Nature Neuroscience.

[124]  W. Levick,et al.  Lateral geniculate neurons of cat: retinal inputs and physiology. , 1972, Investigative ophthalmology.

[125]  L. Palmer,et al.  Organization of simple cell responses in the three-dimensional (3-D) frequency domain , 1994, Visual Neuroscience.

[126]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[127]  Stephen D Van Hooser,et al.  Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinensis). , 2003, Journal of neurophysiology.

[128]  Trichur Raman Vidyasagar,et al.  Excitation and inhibition in orientation selectivity of cat visual cortex neurons revealed by whole-cell recordings in vivo , 1993, Visual Neuroscience.

[129]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[130]  I. Ohzawa,et al.  Encoding of binocular disparity by complex cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[131]  K. Miller,et al.  LGN input to simple cells and contrast-invariant orientation tuning: an analysis. , 2002, Journal of neurophysiology.

[132]  S. Sherman,et al.  Relative distribution of synapses in the A‐laminae of the lateral geniculate nucleus of the cat , 2000, The Journal of comparative neurology.

[133]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[134]  David Fitzpatrick,et al.  Emergent Properties of Layer 2/3 Neurons Reflect the Collinear Arrangement of Horizontal Connections in Tree Shrew Visual Cortex , 2003, The Journal of Neuroscience.

[135]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[136]  G. Barrionuevo,et al.  Lateral geniculate nucleus unitary discharge in sleep and waking: state- and rate-specific aspects. , 1983, Journal of neurophysiology.

[137]  David Fitzpatrick,et al.  A morphological basis for orientation tuning in primary visual cortex , 2004, Nature Neuroscience.

[138]  田中 啓治,et al.  Cross-correlation analysis of geniculostriate neuronal relationships in cats , 1983 .

[139]  U. Eysel,et al.  Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques , 1998, The European journal of neuroscience.

[140]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .

[141]  K. Miller,et al.  Different Roles for Simple-Cell and Complex-Cell Inhibition in V1 , 2003, The Journal of Neuroscience.

[142]  P. Heggelund Quantitative studies of enhancement and suppression zones in the receptive field of simple cells in cat striate cortex. , 1986, The Journal of physiology.

[143]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[144]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[145]  Professor Dr. Guy A. Orban Neuronal Operations in the Visual Cortex , 1983, Studies of Brain Function.

[146]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[147]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[148]  P. Heggelund Receptive field organization of complex cells in cat striate cortex , 2004, Experimental Brain Research.

[149]  L. Palmer,et al.  The two-dimensional spatial structure of nonlinear subunits in the receptive fields of complex cells , 1990, Vision Research.

[150]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[151]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[152]  Yun Wang,et al.  Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. , 2002, Cerebral cortex.

[153]  Kenji Okajima,et al.  A Complex Cell-Like Receptive Field Obtained by Information Maximization , 2001, Neural Computation.

[154]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[155]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[156]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[157]  J. Stone,et al.  Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. , 1971, Brain research.