Pursuit of food versus pursuit of information in a Markovian perception-action loop model of foraging.

Efficient coding, redundancy reduction, and other information theoretic optimization principles have successfully explained the organization of many biological phenomena, from the physiology of sensory receptive fields to the variability of certain DNA sequence ensembles. Here we examine the hypothesis that behavioral strategies that are optimal for survival must necessarily involve efficient information processing, and ask whether there can be circumstances in which deliberately sacrificing some information can lead to higher utility? To this end, we present an analytically tractable model for a particular instance of a perception-action loop: a creature searching for a randomly moving food source confined to a 1D ring world. The model incorporates the statistical structure of the creature's world, the effects of the creature's actions on that structure, and the creature's strategic decision process. The underlying model takes the form of a Markov process on an infinite dimensional state space. To analyze it we construct an exact coarse graining that reduces the model to a Markov process on a finite number of "information states". This mathematical technique allows us to make quantitative comparisons between the performance of an information-theoretically optimal strategy with other candidate search strategies on a food gathering task. We find that 1. Information optimal search does not necessarily optimize utility (expected food gain). 2. The rank ordering of search strategies by information performance does not predict their ordering by expected food obtained. 3. The relative advantage of different strategies depends on the statistical structure of the environment, in particular the variability of motion of the source. We conclude that there is no simple relationship between information and utility. Even in the absence of information processing costs or bandwidth constraints, behavioral optimality does not imply information efficiency, nor is there a simple tradeoff between the two objectives of gaining information about a food source versus obtaining the food itself. For a wide range of values of the food source's movement parameter, the strategy of collecting the most information possible about the unknown source location carries an ineliminable structural cost, leading to a situation in which a foraging creature could actually choose to be less well-informed while simultaneously being, on average, better fed.

[1]  M. Birkett,et al.  Chemical stimuli supporting foraging behaviour of Coccinella septempunctata L. (Coleoptera: Coccinellidae): volatiles and allelobiosis , 2008 .

[2]  Michael DeWeese,et al.  Optimization Principles for the Neural Code , 1995, NIPS.

[3]  D. Blackwell Finite Non-Homogeneous Chains , 1945 .

[4]  Naftali Tishby,et al.  Predictability, Complexity, and Learning , 2000, Neural Computation.

[5]  P. Holmes,et al.  Neuromechanical models for insect locomotion: Stability, maneuverability, and proprioceptive feedback. , 2009, Chaos.

[6]  K. Loparo,et al.  Active probing for information in control systems with quantized state measurements: a minimum entropy approach , 1997, IEEE Trans. Autom. Control..

[7]  P Reinagel,et al.  Natural scene statistics at the centre of gaze. , 1999, Network.

[8]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[9]  A. Reynolds,et al.  Free-Flight Odor Tracking in Drosophila Is Consistent with an Optimal Intermittent Scale-Free Search , 2007, PloS one.

[10]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[11]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[12]  Suguru Arimoto,et al.  An algorithm for computing the capacity of arbitrary discrete memoryless channels , 1972, IEEE Trans. Inf. Theory.

[13]  Michael J. Berry,et al.  Synergy, Redundancy, and Independence in Population Codes , 2003, The Journal of Neuroscience.

[14]  Naftali Tishby,et al.  Multivariate Information Bottleneck , 2001, Neural Computation.

[15]  Pablo A Iglesias,et al.  Navigating through models of chemotaxis. , 2008, Current opinion in cell biology.

[16]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[17]  Peter J Thomas Every Bit Counts , 2011, Science.

[18]  W. Rappel,et al.  Receptor noise and directional sensing in eukaryotic chemotaxis. , 2008, Physical review letters.

[19]  D. Kramer,et al.  The Behavioral Ecology of Intermittent Locomotion1 , 2001 .

[20]  I. Nemenman,et al.  Optimal Signal Processing in Small Stochastic Biochemical Networks , 2006, PloS one.

[21]  Christoph Adami,et al.  Selective pressures on genomes in molecular evolution , 2003, Journal of theoretical biology.

[22]  Robert G. Endres,et al.  Noise characteristics of the Escherichia coli rotary motor , 2011, BMC Systems Biology.

[23]  W. Loomis,et al.  Cell biology: A cell for all reasons , 1999, Nature.

[24]  C. Gallistel,et al.  Time and Associative Learning. , 2010, Comparative cognition & behavior reviews.

[25]  R. Bellman A Markovian Decision Process , 1957 .

[26]  H. Berg,et al.  Temporal comparisons in bacterial chemotaxis. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Wouter-Jan Rappel,et al.  Establishing direction during chemotaxis in eukaryotic cells. , 2002, Biophysical journal.

[28]  M. Bartlett,et al.  Weak ergodicity in non-homogeneous Markov chains , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  R Linsker,et al.  Perceptual neural organization: some approaches based on network models and information theory. , 1990, Annual review of neuroscience.

[30]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[31]  Sergey N Markin,et al.  Annals of the New York Academy of Sciences Afferent Control of Locomotor Cpg: Insights from a Simple Neuromechanical Model , 2022 .

[32]  J. Miller,et al.  Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system. , 1996, Journal of neurophysiology.

[33]  Randall D. Beer,et al.  Generalized Measures of Information Transfer , 2011, ArXiv.

[34]  Bruno A. Olshausen,et al.  EDITORIAL: Sensory coding in the natural environment , 2003 .

[35]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[36]  W Bialek,et al.  On the application of information theory to neural spike trains. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[37]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Wouter-Jan Rappel,et al.  Quantifying Information Transmission in Eukaryotic Gradient Sensing and Chemotactic Response , 2011, Journal of statistical physics.

[39]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[40]  J. Fuster Upper processing stages of the perception–action cycle , 2004, Trends in Cognitive Sciences.

[41]  P. V. van Haastert,et al.  Chemotaxis: Navigating by Multiple Signaling Pathways , 2007, Science's STKE.

[42]  C. Parent,et al.  A cell's sense of direction. , 1999, Science.

[43]  S. Laughlin,et al.  Energy limitation as a selective pressure on the evolution of sensory systems , 2008, Journal of Experimental Biology.

[44]  Guy Jumarie Subjectivity, information, systems : an introduction to a theory of relativistic cybernetics , 1986 .

[45]  J. Kazura,et al.  Why do we need to know more about mixed Plasmodium species infections in humans? , 2004, Trends in parasitology.

[46]  Chrystopher L. Nehaniv,et al.  Keep Your Options Open: An Information-Based Driving Principle for Sensorimotor Systems , 2008, PloS one.

[47]  C. Gallistel,et al.  The rat approximates an ideal detector of changes in rates of reward: implications for the law of effect. , 2001, Journal of experimental psychology. Animal behavior processes.

[48]  Richard M. Salter,et al.  An Information Theoretic Framework for Eukaryotic Gradient Sensing , 2006, NIPS.

[49]  William B. Kristan,et al.  Quantifying Stimulus Discriminability: A Comparison of Information Theory and Ideal Observer Analysis , 2005, Neural Computation.

[50]  A. J. Bell,et al.  Levels and loops: the future of artificial intelligence and neuroscience. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[51]  Michael S. Lewicki,et al.  Efficient auditory coding , 2006, Nature.

[52]  Robert A Gatenby,et al.  Information Theory in Living Systems, Methods, Applications, and Challenges , 2007, Bulletin of mathematical biology.

[53]  Touchette,et al.  Information-theoretic limits of control , 1999, Physical review letters.

[54]  Daniel Polani,et al.  Information: Currency of life? , 2009, HFSP journal.

[55]  T. D. Schneider,et al.  70% efficiency of bistate molecular machines explained by information theory, high dimensional geometry and evolutionary convergence , 2010, Nucleic acids research.

[56]  G. Grimmett,et al.  Probability and random processes , 2002 .

[57]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[58]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[59]  Carl T. Bergstrom,et al.  Shannon information and biological fitness , 2004, Information Theory Workshop.

[60]  Stefano Panzeri,et al.  Correcting for the sampling bias problem in spike train information measures. , 2007, Journal of neurophysiology.

[61]  L. Saloff-Coste,et al.  Convergence of some time inhomogeneous Markov chains via spectral techniques , 2007 .

[62]  Wouter-Jan Rappel,et al.  How geometry and internal bias affect the accuracy of eukaryotic gradient sensing. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[64]  Pablo A. Iglesias,et al.  Optimal Noise Filtering in the Chemotactic Response of Escherichia coli , 2006, PLoS Comput. Biol..

[65]  Naftali Tishby,et al.  Past-future information bottleneck in dynamical systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[67]  Felix Creutzig,et al.  Predictive Coding and the Slowness Principle: An Information-Theoretic Approach , 2008, Neural Computation.

[68]  S. F. Taylor,et al.  Information and fitness , 2007, 0712.4382.

[69]  P Reinagel,et al.  Natural stimulus statistics. , 2001, Network.

[70]  K. Loparo,et al.  Optimal state estimation for stochastic systems: an information theoretic approach , 1997, IEEE Trans. Autom. Control..

[71]  Martin J. Wainwright,et al.  Log-determinant relaxation for approximate inference in discrete Markov random fields , 2006, IEEE Transactions on Signal Processing.

[72]  D. Bray,et al.  Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. , 1993, Molecular biology of the cell.

[73]  Orion D. Weiner,et al.  Leukocytes navigate by compass: roles of PI3Kγ and its lipid products , 2000 .

[74]  Daniel Polani,et al.  Models of Information Processing in the Sensorimotor Loop , 2009 .

[75]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[76]  Robert H Insall,et al.  Chemotaxis: finding the way forward with Dictyostelium. , 2009, Trends in cell biology.

[77]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[78]  Pablo A. Iglesias,et al.  An Information-Theoretic Characterization of the Optimal Gradient Sensing Response of Cells , 2007, PLoS Comput. Biol..

[79]  Thomas Wennekers,et al.  Dynamical properties of strongly interacting Markov chains , 2003, Neural Networks.

[80]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[81]  R. Insall,et al.  Chemotaxis in Dictyostelium: how to walk straight using parallel pathways. , 2007, Current opinion in microbiology.

[82]  Martin J. Wainwright,et al.  Stochastic processes on graphs with cycles: geometric and variational approaches , 2002 .

[83]  M. L. Shik,et al.  Neurophysiology of locomotor automatism. , 1976, Physiological reviews.

[84]  Barry E. Griffiths,et al.  Optimal control of jump-linear gaussian systems† , 1985 .

[85]  Thomas Wennekers,et al.  Finite State Automata Resulting from Temporal Information Maximization and a Temporal Learning Rule , 2005, Neural Computation.

[86]  Bruno A. Olshausen,et al.  Sensory coding in the natural environment , 2003 .

[87]  Carl T. Bergstrom,et al.  The fitness value of information , 2005, Oikos.

[88]  R T Tranquillo,et al.  A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations , 1988, The Journal of cell biology.

[89]  W. Rappel,et al.  Phenomenological approach to eukaryotic chemotactic efficiency. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[91]  C. Gallistel,et al.  Temporal maps and informativeness in associative learning , 2009, Trends in Neurosciences.

[92]  S. Garthe,et al.  Pursuit plunging by northern gannets (Sula bassana) "feeding on capelin (Mallotus villosus)" , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[93]  Susanne Still,et al.  Information-theoretic approach to interactive learning , 2007, 0709.1948.

[94]  R. Full,et al.  Dynamic stabilization of rapid hexapedal locomotion. , 2002, The Journal of experimental biology.

[95]  I. Nemenman,et al.  Information Transduction Capacity of Noisy Biochemical Signaling Networks , 2011, Science.

[96]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[97]  T. D. Schneider,et al.  Evolution of biological information. , 2000, Nucleic acids research.

[98]  J. Timmer,et al.  Design principles of a bacterial signalling network , 2005, Nature.

[99]  C. Ofria,et al.  Genome complexity, robustness and genetic interactions in digital organisms , 1999, Nature.

[100]  A. Seth,et al.  Granger causality and transfer entropy are equivalent for Gaussian variables. , 2009, Physical review letters.

[101]  Chrystopher L. Nehaniv,et al.  Representations of Space and Time in the Maximization of Information Flow in the Perception-Action Loop , 2007, Neural Computation.

[102]  Randall D. Beer,et al.  The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment , 1997, Trends in Neurosciences.

[103]  Emanuel Todorov,et al.  Efficient computation of optimal actions , 2009, Proceedings of the National Academy of Sciences.

[104]  O. Taussky A Recurring Theorem on Determinants , 1949 .

[105]  Massimo Vergassola,et al.  Bacterial strategies for chemotaxis response , 2010, Proceedings of the National Academy of Sciences.

[106]  W. Rappel,et al.  External and internal constraints on eukaryotic chemotaxis , 2010, Proceedings of the National Academy of Sciences.

[107]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[108]  Naftali Tishby,et al.  The minimum information principle and its application to neural code analysis , 2009, Proceedings of the National Academy of Sciences.

[109]  C. Adami,et al.  Introduction To Artificial Life , 1997, IEEE Trans. Evol. Comput..

[110]  L. Saloff-Coste,et al.  Merging for inhomogeneous finite Markov chains, part II: Nash and log-Sobolev inequalities , 2011, 1104.1560.

[111]  Henry R. Bourne,et al.  Cell polarity: A chemical compass , 2002, Nature.

[112]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[113]  W. Rappel,et al.  Physical limits on cellular sensing of spatial gradients. , 2010, Physical review letters.

[114]  K. Kaski,et al.  Dynamics of forced biopolymer translocation , 2009, 0905.1014.

[115]  L. Saloff-Coste,et al.  Merging for time inhomogeneous finite Markov chains, Part I: singular values and stability , 2009 .

[116]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[117]  A. Houston,et al.  State-dependent life histories , 1996, Nature.

[118]  Christian Van den Broeck,et al.  Statistical Mechanics of Learning , 2001 .

[119]  T. D. Schneider,et al.  Information content of binding sites on nucleotide sequences. , 1986, Journal of molecular biology.

[120]  Eric L. Schwartz,et al.  Computational Neuroscience , 1993, Neuromethods.

[121]  B. Evans,et al.  Flexible search tactics and efficient foraging in saltatory searching animals , 1989, Oecologia.

[122]  W. Ashby,et al.  An Introduction to Cybernetics , 1957 .

[123]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[124]  Wilson S. Geisler,et al.  Optimal eye movement strategies in visual search , 2005, Nature.

[125]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[126]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[127]  Kenji Doya,et al.  How can we learn efficiently to act optimally and flexibly? , 2009, Proceedings of the National Academy of Sciences.