Analysis of H2 and H∞ performance of discrete periodically time-varying controllers

Abstract This paper presents analysis of the H 2 and H ∞ performance of discrete linear periodically time-varying controllers for control of linear time-invariant plants. Using a frequency-domain lifting approach, the analysis distinguishes periodically time-varying control from time-invariant control to show that the multiple transfer channels of the system time-varying dynamics amplify the overall system gain. Such a result can provide deeper insights into the system time-varying mechanism and clarify how the time-varying dynamics acts and degrades the system performance. Quantitatively, the paper presents necessary and sufficient conditions under which a linear time-invariant controller can be found to provide strictly better control than periodically time-varying controllers.

[1]  K. Poolla,et al.  Robust control of linear time-invariant plants using periodic compensation , 1985 .

[2]  Yutaka Yamamoto,et al.  New approach to sampled-data control systems-a function space method , 1990, 29th IEEE Conference on Decision and Control.

[3]  Bassam Bamieh,et al.  A general framework for linear periodic systems with applications to H/sup infinity / sampled-data control , 1992 .

[4]  K. Poolla,et al.  Nonlinear time-varying controllers for robust stabilization , 1987 .

[5]  Cisheng Zhang,et al.  A Fourier Series Lifting Approach to H∞ Sampled Data Control , 1993 .

[6]  Jingxin Zhang,et al.  Stability margin analysis of discrete periodically time varying controllers , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[7]  Ali Saberi,et al.  The discrete‐time H∞ control problem with measurement feedback , 1994 .

[8]  Graham C. Goodwin,et al.  Linear periodic control: A frequency domain viewpoint , 1992 .

[9]  Bruce A. Francis,et al.  Uniformly optimal control of linear feedback systems , 1985, Autom..

[10]  G. Goodwin,et al.  Generalized sample hold functions-frequency domain analysis of robustness, sensitivity, and intersample difficulties , 1994, IEEE Trans. Autom. Control..

[11]  T. Runolfsson,et al.  Vibrational feedback control: Zeros placement capabilities , 1987 .

[12]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[13]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[14]  J. Shamma,et al.  Time-varying versus time-invariant compensation for rejection of persistent bounded disturbances and robust stabilization , 1991 .

[15]  B. Francis,et al.  A lifting technique for linear periodic systems with applications to sampled-data control , 1991 .

[16]  Bassam Bamieh,et al.  The 2 problem for sampled-data systems , 1992, Systems & Control Letters.

[17]  B. O. Anderson,et al.  Time-varying feedback laws for decentralized control , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[18]  A. Stoorvogel The discrete time H∞ control problem with measurement feedback , 1992 .

[19]  Tongwen Chen,et al.  Linear time-varying H2-optimal control of sampled-data systems , 1991, Autom..

[20]  Cishen Zhang,et al.  Simultaneous Stabilization Using An Lti Compensator With a Sampler and Hold , 1993 .

[21]  B. Francis,et al.  Stability Theory for Linear Time-Invariant Plants with Periodic Digital Controllers , 1988 .

[22]  Michael Green,et al.  Discrete time H∞ control , 1989 .

[23]  Cisheng Zhang,et al.  A dual rate digital compensator for zero assignment , 1992 .

[24]  Cishen Zhang,et al.  A multirate digital controller for model matching , 1994, Autom..

[25]  Bassam Bamieh,et al.  The H 2 problem for sampled-data systems m for sampled-data systems , 1992 .

[26]  P. Kabamba Control of Linear Systems Using Generalized Sampled-Data Hold Functions , 1987, 1987 American Control Conference.

[27]  M. Dahleh,et al.  Analysis of time-varying control strategies for optimal disturbance rejection and robustness , 1992 .

[28]  Vladimír Kucera Algebraic theory of discrete optimal control for multivariable systems [I.] , 1974, Kybernetika.

[29]  Cishen Zhang,et al.  Robustness analysis of control systems using generalized sample hold functions , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[30]  C. Sidney Burrus,et al.  A unified analysis of multirate and periodically time-varying digital filters , 1975 .