Heterogeneous-Agent Trajectory Forecasting Incorporating Class Uncertainty

Reasoning about the future behavior of other agents is critical to safe robot navigation. The multiplicity of plausible futures is further amplified by the uncertainty inherent to agent state estimation from data, including positions, velocities, and semantic class. Forecasting methods, however, typically neglect class uncertainty, conditioning instead only on the agent’s most likely class, even though perception models often return full class distributions. To exploit this information, we present HAICU, a method for heterogeneous-agent trajectory forecasting that explicitly incorporates agents’ class probabilities. We additionally present PUP, a new challenging real-world autonomous driving dataset, to investigate the impact of Perceptual Uncertainty in Prediction. It contains challenging crowded scenes with unfiltered agent class probabilities that reflect the long-tail of current state-of-the-art perception systems. We demonstrate that incorporating class probabilities in trajectory forecasting significantly improves performance in the face of uncertainty, and enables new forecasting capabilities such as counterfactual predictions.

[1]  Stefano Ermon,et al.  InfoVAE: Balancing Learning and Inference in Variational Autoencoders , 2019, AAAI.

[2]  Sergio Casas,et al.  Implicit Latent Variable Model for Scene-Consistent Motion Forecasting , 2020, ECCV.

[3]  Sergio Casas,et al.  IntentNet: Learning to Predict Intention from Raw Sensor Data , 2018, CoRL.

[4]  C. Krishna Mohan,et al.  Vehicle Trajectory Prediction at Intersections using Interaction based Generative Adversarial Networks , 2019, 2019 IEEE Intelligent Transportation Systems Conference (ITSC).

[5]  Emilio Frazzoli,et al.  A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles , 2016, IEEE Transactions on Intelligent Vehicles.

[6]  Dariu M. Gavrila,et al.  Human motion trajectory prediction: a survey , 2019, Int. J. Robotics Res..

[7]  Paul Vernaza,et al.  r2p2: A ReparameteRized Pushforward Policy for Diverse, Precise Generative Path Forecasting , 2018, ECCV.

[8]  Renjie Liao,et al.  SpAGNN: Spatially-Aware Graph Neural Networks for Relational Behavior Forecasting from Sensor Data , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[10]  Javier Alonso-Mora,et al.  Planning and Decision-Making for Autonomous Vehicles , 2018, Annu. Rev. Control. Robotics Auton. Syst..

[11]  Siddhartha S. Srinivasa,et al.  Planning-based prediction for pedestrians , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Julien Cornebise,et al.  Weight Uncertainty in Neural Networks , 2015, ArXiv.

[13]  Sammy Omari,et al.  One Thousand and One Hours: Self-driving Motion Prediction Dataset , 2020, CoRL.

[14]  Thomas Brox,et al.  Overcoming Limitations of Mixture Density Networks: A Sampling and Fitting Framework for Multimodal Future Prediction , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Marco Pavone,et al.  MATS: An Interpretable Trajectory Forecasting Representation for Planning and Control , 2020, CoRL.

[16]  Silvio Savarese,et al.  Social LSTM: Human Trajectory Prediction in Crowded Spaces , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Jean Pierre Mercat,et al.  Multi-Head Attention for Multi-Modal Joint Vehicle Motion Forecasting , 2019, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Dinesh Manocha,et al.  TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents , 2018, AAAI.

[19]  Ben Poole,et al.  Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.

[20]  Silvio Savarese,et al.  Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  Kilian Q. Weinberger,et al.  On Calibration of Modern Neural Networks , 2017, ICML.

[22]  Silvio Savarese,et al.  SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[24]  Silvio Savarese,et al.  Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks , 2019, NeurIPS.

[25]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[26]  Lennart Ljung,et al.  Extended Kalman Filter , 1987 .

[27]  Marco Pavone,et al.  Evidential Sparsification of Multimodal Latent Spaces in Conditional Variational Autoencoders , 2020, NeurIPS.

[28]  Francisco Eiras,et al.  Interpretable Goal-based Prediction and Planning for Autonomous Driving , 2020 .

[29]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[30]  Marco Pavone,et al.  Trajectron++: Dynamically-Feasible Trajectory Forecasting with Heterogeneous Data , 2020, ECCV.

[31]  Justin Dauwels,et al.  Modeling Sensing and Perception Errors towards Robust Decision Making in Autonomous Vehicles , 2020, ArXiv.

[32]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[33]  Dizan Vasquez,et al.  A survey on motion prediction and risk assessment for intelligent vehicles , 2014, ROBOMECH Journal.

[34]  Bin Yang,et al.  Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[35]  Silvio Savarese,et al.  Structural-RNN: Deep Learning on Spatio-Temporal Graphs , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[37]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[38]  Rüdiger Dillmann,et al.  Probabilistic decision-making under uncertainty for autonomous driving using continuous POMDPs , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[39]  Martial Hebert,et al.  Activity Forecasting , 2012, ECCV.

[40]  Sergey Levine,et al.  PRECOG: PREdiction Conditioned on Goals in Visual Multi-Agent Settings , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[41]  Roberto Cipolla,et al.  Concrete Problems for Autonomous Vehicle Safety: Advantages of Bayesian Deep Learning , 2017, IJCAI.

[42]  Alex Kendall,et al.  Concrete Dropout , 2017, NIPS.

[43]  Elena Corina Grigore,et al.  CoverNet: Multimodal Behavior Prediction Using Trajectory Sets , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Marco Pavone,et al.  Multimodal Probabilistic Model-Based Planning for Human-Robot Interaction , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[45]  Marco Pavone,et al.  Generative Modeling of Multimodal Multi-Human Behavior , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[46]  Sergey Levine,et al.  Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models , 2018, NeurIPS.

[47]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[48]  Yi Shen,et al.  TNT: Target-driveN Trajectory Prediction , 2020, CoRL.

[49]  Ruslan Salakhutdinov,et al.  Multiple Futures Prediction , 2019, NeurIPS.

[50]  Benjamin Sapp,et al.  MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction , 2019, CoRL.

[51]  Brian C. Becker,et al.  MultiXNet: Multiclass Multistage Multimodal Motion Prediction , 2020, 2021 IEEE Intelligent Vehicles Symposium (IV).

[52]  Finale Doshi-Velez,et al.  Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks , 2016, ICLR.

[53]  Ying Nian Wu,et al.  Multi-Agent Tensor Fusion for Contextual Trajectory Prediction , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  S. Daniel,et al.  National Highway Traffic Safety Administration , 2020, Federal Regulatory Guide.

[55]  Marco Pavone,et al.  The Trajectron: Probabilistic Multi-Agent Trajectory Modeling With Dynamic Spatiotemporal Graphs , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[56]  Razvan Pascanu,et al.  Interaction Networks for Learning about Objects, Relations and Physics , 2016, NIPS.