Fully interconnected, linear control for limit cycle walking

Limit cycle walkers are a class of bipeds that achieve stable locomotion without enforcing full controllability throughout the gait cycle. Although limit cycle walkers produce more natural-looking and efficient gaits than bipeds that are based on other control principles such as zero moment point walking, they cannot yet achieve the stability and versatility of human locomotion. One open question is the degree of complexity required in the control algorithm to ensure reliable terrain adaptation and disturbance rejection. The present study applies a fully interconnected, linear controller to a two-dimensional, five-link walking model, achieving stable and efficient locomotion over unpredictable terrain (slopes varying between 2° and 7° and step-downs varying between 0 and 25% leg length). The results indicate that elaborate control principles are not necessarily required for stable bipedal walking.

[1]  Arthur D Kuo,et al.  Energetics of actively powered locomotion using the simplest walking model. , 2002, Journal of biomechanical engineering.

[2]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Martijn Wisse,et al.  Ankle Actuation for Limit Cycle Walkers , 2008, Int. J. Robotics Res..

[4]  Andy Ruina,et al.  A Bipedal Walking Robot with Efficient and Human-Like Gait , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[5]  Daan G. E. Hobbelen,et al.  Limit Cycle Walking , 2007 .

[6]  Florentin Wörgötter,et al.  Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning , 2007, PLoS Comput. Biol..

[7]  Phil Husbands,et al.  Evolution of central pattern generators for bipedal walking in a real-time physics environment , 2002, IEEE Trans. Evol. Comput..

[8]  Martijn Wisse,et al.  Controlling the Walking Speed in Limit Cycle Walking , 2008, Int. J. Robotics Res..

[9]  G. B. Kauffman,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005 .

[10]  Shuuji Kajita,et al.  Development of humanoid robot HRP-3P , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[11]  Stanley J. Rosenschein,et al.  A dynamical systems perspective on agent-environment interaction , 1996 .

[12]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[13]  Garth Zeglin,et al.  Ankle springs instead of arc-shaped feet for passive dynamic walkers , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[14]  Aude Billard,et al.  GasNets and other Evolvable Neural Networks applied to Bipedal Locomotion , 2004 .

[15]  Fumio Kanehiro,et al.  Development of Humanoid Robot “HRP-3” , 2008 .

[16]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[17]  R. Brand,et al.  The biomechanics and motor control of human gait: Normal, elderly, and pathological , 1992 .

[18]  Katie Byl,et al.  Metastable Walking Machines , 2009, Int. J. Robotics Res..

[19]  Chandana Paul,et al.  Sensorimotor Control of Biped Locomotion , 2005, Adapt. Behav..

[20]  J. Shebalin Nonlinear dynamics and control of a flat plate , 1984 .

[21]  T. Ishida Development of a small biped entertainment robot QRIO , 2004, Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004..

[22]  Toru Shimada,et al.  Self-Excited Walking of a Biped Mechanism , 2001, Int. J. Robotics Res..

[23]  Bernard Espiau,et al.  Limit cycles and their stability in a passive bipedal gait , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[24]  M. Wisse Three additions to passive dynamic walking; actuation, an upper body, and 3D stability , 2004, Humanoids.

[25]  Jerry E. Pratt,et al.  Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots , 2000 .

[26]  Chee-Meng Chew,et al.  Dynamic bipedal walking assisted by learning , 2002, Robotica.

[27]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[28]  Inman Harvey,et al.  Noise and the Reality Gap: The Use of Simulation in Evolutionary Robotics , 1995, ECAL.

[29]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[30]  M. Coleman,et al.  The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.

[31]  Gentaro Taga,et al.  A model of the neuro-musculo-skeletal system for human locomotion , 1995, Biological Cybernetics.

[32]  Randall D. Beer,et al.  Evolving Dynamical Neural Networks for Adaptive Behavior , 1992, Adapt. Behav..

[33]  Phil Husbands,et al.  GasNets and other evovalble neural networks applied to bipedal locomotion , 2004 .

[34]  Arthur D. Kuo,et al.  Stabilization of Lateral Motion in Passive Dynamic Walking , 1999, Int. J. Robotics Res..

[35]  Martijn Wisse,et al.  Active Lateral Foot Placement for 3D Stabilization of a Limit Cycle Walker Prototype , 2009, Int. J. Humanoid Robotics.

[36]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[37]  Martijn Wisse,et al.  Swing-Leg Retraction for Limit Cycle Walkers Improves Disturbance Rejection , 2008, IEEE Transactions on Robotics.

[38]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[39]  Jun Morimoto,et al.  An empirical exploration of a neural oscillator for biped locomotion control , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[40]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[41]  Frans C. T. van der Helm,et al.  How to keep from falling forward: elementary swing leg action for passive dynamic walkers , 2005, IEEE Transactions on Robotics.

[42]  Ezequiel A. Di Paolo,et al.  The evolution of control and adaptation in a 3D powered passive dynamic walker , 2004 .

[43]  Stefano Nolfi,et al.  Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines , 2000 .

[44]  Martijn Wisse,et al.  Using a controller based on reinforcement learning for a passive dynamic walking robot , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[45]  Hiroshi Shimizu,et al.  Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment , 1991, Biological Cybernetics.

[46]  Gentaro Taga,et al.  A model of the neuro-musculo-skeletal system for human locomotion , 1995, Biological Cybernetics.

[47]  Francesco Mondada,et al.  Evolution of neural control structures: some experiments on mobile robots , 1995, Robotics Auton. Syst..

[48]  H. Sebastian Seung,et al.  Stochastic policy gradient reinforcement learning on a simple 3D biped , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[49]  Martijn Wisse,et al.  Three additions to passive dynamic walking; actuation, an upper body, and 3D stability , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[50]  V. Braitenberg Vehicles, Experiments in Synthetic Psychology , 1984 .