Evolved Machines Shed Light on Robustness and Resilience

In biomimetic engineering, we may take inspiration from the products of biological evolution: we may instantiate biologically realistic neural architectures and algorithms in robots, or we may construct robots with morphologies that are found in nature. Alternatively, we may take inspiration from the process of evolution: we may evolve populations of robots in simulation and then manufacture physical versions of the most interesting or more capable robots that evolve. If we follow this latter approach and evolve both the neural and morphological subsystems of machines, we can perform controlled experiments that provide unique insight into how bodies and brains can work together to produce adaptive behavior, regardless of whether such bodies and brains are instantiated in a biological or technological substrate. In this paper, we review selected projects that use such methods to investigate the synergies and tradeoffs between neural architecture, morphology, action, and adaptive behavior.

[1]  A. Clark Being There: Putting Brain, Body, and World Together Again , 1996 .

[2]  Michael A. Goodrich,et al.  Human-Robot Interaction: A Survey , 2008, Found. Trends Hum. Comput. Interact..

[3]  Marvin Minsky,et al.  Society of Mind: A Response to Four Reviews , 1991, Artif. Intell..

[4]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[5]  Mark Yim,et al.  Modular Robots , 2016, Springer Handbook of Robotics, 2nd Ed..

[6]  G. Reeke Marvin Minsky, The Society of Mind , 1991, Artif. Intell..

[7]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[8]  A. Meltzoff 'Like me': a foundation for social cognition. , 2007, Developmental science.

[9]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[10]  Anil K. Seth,et al.  Environment and Behavior Influence the Complexity of Evolved Neural Networks , 2004, Adapt. Behav..

[11]  Ezequiel A. Di Paolo,et al.  The evolution of control and adaptation in a 3D powered passive dynamic walker , 2004 .

[12]  Brian C. Thomas,et al.  Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. , 2006, Genome research.

[13]  Aurel A. Lazar,et al.  Information theory in neuroscience , 2011, Journal of Computational Neuroscience.

[14]  Josh C. Bongard Spontaneous evolution of structural modularity in robot neural network controllers: artificial life/robotics/evolvable hardware , 2011, GECCO '11.

[15]  D. Wolpert,et al.  Principles of sensorimotor learning , 2011, Nature Reviews Neuroscience.

[16]  Eiichi Yoshida,et al.  M-TRAN: self-reconfigurable modular robotic system , 2002 .

[17]  Karl Sims,et al.  Evolving 3d morphology and behavior by competition , 1994 .

[18]  A. Gopnik,et al.  Mechanisms of theory formation in young children , 2004, Trends in Cognitive Sciences.

[19]  Luc Berthouze,et al.  Motor Skill Acquisition Under Environmental Perturbations: On the Necessity of Alternate Freezing and Freeing of Degrees of Freedom , 2004, Adapt. Behav..

[20]  Kenneth de Jong,et al.  Evolutionary computation: a unified approach , 2007, GECCO.

[21]  Mongi A. Abidi,et al.  Shape analysis algorithm based on information theory , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[22]  Wolfgang Maass,et al.  Noise as a Resource for Computation and Learning in Networks of Spiking Neurons , 2014, Proceedings of the IEEE.

[23]  Joshua Evan Auerbach,et al.  Environmental Influence on the Evolution of Morphological Complexity in Machines , 2014, PLoS Comput. Biol..

[24]  Carsten Duch,et al.  Behavioral transformations during metamorphosis: remodeling of neural and motor systems , 2000, Brain Research Bulletin.

[25]  Edward T. Bullmore,et al.  Neuroinformatics Original Research Article , 2022 .

[26]  Phil Husbands,et al.  Evolution of central pattern generators for bipedal walking in a real-time physics environment , 2002, IEEE Trans. Evol. Comput..

[27]  H. Barrett,et al.  Modularity in cognition: framing the debate. , 2006, Psychological review.

[28]  A. Goldman,et al.  Mirror neurons and the simulation theory of mind-reading , 1998, Trends in Cognitive Sciences.

[29]  Kojiro Matsushita,et al.  Simulating development in a real robot: on the concurrent increase of sensory, motor, and neural complexity , 2004 .

[30]  Stefano Nolfi,et al.  Evolution of Prehension Ability in an Anthropomorphic Neurorobotic Arm , 2007, Frontiers in neurorobotics.

[31]  R. Ivry,et al.  The coordination of movement: optimal feedback control and beyond , 2010, Trends in Cognitive Sciences.

[32]  S. Carroll Chance and necessity: the evolution of morphological complexity and diversity , 2001, Nature.

[33]  Dileep George,et al.  Towards a Mathematical Theory of Cortical Micro-circuits , 2009, PLoS Comput. Biol..

[34]  Nicolas H. Franceschini,et al.  Small Brains, Smart Machines: From Fly Vision to Robot Vision and Back Again , 2014, Proceedings of the IEEE.

[35]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[36]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[37]  Kyung-Joong Kim,et al.  Towards a "theory of mind" in simulated robots , 2009, GECCO '09.

[38]  Andrew N. Meltzoff,et al.  Self discovery enables robot social cognition: Are you my teacher? , 2010, Neural Networks.

[39]  Alejandro Hernández Arieta,et al.  Body Schema in Robotics: A Review , 2010, IEEE Transactions on Autonomous Mental Development.

[40]  Kenneth O. Stanley,et al.  Compositional Pattern Producing Networks : A Novel Abstraction of Development , 2007 .

[41]  Leslie G. Valiant,et al.  Evolvability , 2009, JACM.

[42]  Jun Tani,et al.  Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment , 2008, PLoS Comput. Biol..

[43]  D. McShea,et al.  Biology's First Law: The Tendency for Diversity and Complexity to Increase in Evolutionary Systems , 2010 .

[44]  H. Sebastian Seung,et al.  Query by committee , 1992, COLT '92.

[45]  L. Altenberg,et al.  PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY , 1996, Evolution; international journal of organic evolution.

[46]  Simei Gomes Wysoski,et al.  Evolving spiking neural networks for audiovisual information processing , 2010, Neural Networks.

[47]  Marco Colombetti,et al.  Robot Shaping: Developing Autonomous Agents Through Learning , 1994, Artif. Intell..

[48]  M. Kawato,et al.  Modular organization of internal models of tools in the human cerebellum , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[50]  FrantiĹĄek TrebuĹa,et al.  Self-Reconfigurable Modular Robotic System , 2012 .

[51]  R. Quiroga,et al.  Extracting information from neuronal populations : information theory and decoding approaches , 2022 .

[52]  Hod Lipson,et al.  Age-fitness pareto optimization , 2010, GECCO '10.

[53]  A. Clark Whatever next? Predictive brains, situated agents, and the future of cognitive science. , 2013, The Behavioral and brain sciences.

[54]  D. Floreano,et al.  Evolution of Adaptive Behaviour in Robots by Means of Darwinian Selection , 2010, PLoS biology.

[55]  Colin R. Reeves,et al.  Evolutionary computation: a unified approach , 2007, Genetic Programming and Evolvable Machines.

[56]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[57]  J. Bruner,et al.  The role of tutoring in problem solving. , 1976, Journal of child psychology and psychiatry, and allied disciplines.

[58]  H. Sebastian Seung,et al.  Learning to Walk in 20 Minutes , 2005 .

[59]  K. Dautenhahn,et al.  Imitation and Social Learning in Robots, Humans and Animals: Behavioural, Social and Communicative Dimensions , 2009 .

[60]  Hod Lipson,et al.  ON THE ORIGIN OF MODULAR VARIATION , 2002, Evolution; international journal of organic evolution.

[61]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[62]  B. Irie,et al.  Capabilities of three-layered perceptrons , 1988, IEEE 1988 International Conference on Neural Networks.

[63]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[64]  Andreas Wagner,et al.  Specialization Can Drive the Evolution of Modularity , 2010, PLoS Comput. Biol..

[65]  Hod Lipson,et al.  Resilient Machines Through Continuous Self-Modeling , 2006, Science.

[66]  F. Vignemont Body schema and body image—Pros and cons , 2010, Neuropsychologia.

[67]  Inman Harvey,et al.  Explorations in Evolutionary Robotics , 1993, Adapt. Behav..

[68]  U. Alon,et al.  Spontaneous evolution of modularity and network motifs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  S. Passy Environmental randomness underlies morphological complexity of colonial diatoms , 2002 .

[70]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[71]  G. Edelman Neural Darwinism: The Theory Of Neuronal Group Selection , 1989 .

[72]  Rick L. Riolo,et al.  Genetic Programming Theory and Practice VIII , 2010 .

[73]  Josh Bongard,et al.  Morphological change in machines accelerates the evolution of robust behavior , 2011, Proceedings of the National Academy of Sciences.

[74]  M. Iacoboni Imitation, empathy, and mirror neurons. , 2009, Annual review of psychology.

[75]  Barry P. Haynes,et al.  Pruning Artificial Neural Networks Using Neural Complexity Measures , 2008, Int. J. Neural Syst..

[76]  Masaki Ogino,et al.  Cognitive Developmental Robotics: A Survey , 2009, IEEE Transactions on Autonomous Mental Development.

[77]  G. Wagner,et al.  The road to modularity , 2007, Nature Reviews Genetics.

[78]  Hod Lipson,et al.  The evolutionary origins of modularity , 2012, Proceedings of the Royal Society B: Biological Sciences.

[79]  P. Palange,et al.  From the authors , 2007, European Respiratory Journal.

[80]  Eörs Szathmáry,et al.  The Neuronal Replicator Hypothesis , 2010, Neural Computation.

[81]  R. Miall,et al.  Connecting mirror neurons and forward models. , 2003, Neuroreport.

[82]  Josh C. Bongard,et al.  The Utility of Evolving Simulated Robot Morphology Increases with Task Complexity for Object Manipulation , 2010, Artificial Life.

[83]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[84]  Takayuki Kanda,et al.  Who will be the customer?: a social robot that anticipates people's behavior from their trajectories , 2008, UbiComp.

[85]  Thomas Miconi,et al.  Evolution and Complexity: The Double-Edged Sword , 2008, Artificial Life.

[86]  Rolf Pfeifer,et al.  How the body shapes the way we think - a new view on intelligence , 2006 .

[87]  Josh C. Bongard Accelerating Self-Modeling in Cooperative Robot Teams , 2009, IEEE Transactions on Evolutionary Computation.

[88]  William H. Calvin,et al.  The Cerebral Code: Thinking a Thought in the Mosaics of the Mind , 1996 .

[89]  Inman Harvey,et al.  Noise and the Reality Gap: The Use of Simulation in Evolutionary Robotics , 1995, ECAL.

[90]  Hod Lipson,et al.  Towards Self-reflecting Machines: Two-Minds in One Robot , 2009, ECAL.

[91]  Karl Sims,et al.  Evolving 3D Morphology and Behavior by Competition , 1994, Artificial Life.

[92]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[93]  L. Fadiga,et al.  Active perception: sensorimotor circuits as a cortical basis for language , 2010, Nature Reviews Neuroscience.

[94]  D M Wolpert,et al.  Multiple paired forward and inverse models for motor control , 1998, Neural Networks.

[95]  F. Crick Neural Edelmanism , 1989, Trends in Neurosciences.

[96]  Giulio Sandini,et al.  Active motor babbling for sensorimotor learning , 2009, 2008 IEEE International Conference on Robotics and Biomimetics.

[97]  Ying Zhang,et al.  Robotics: modular robots , 2002 .

[98]  Mongi A. Abidi,et al.  Towards understanding what makes 3D objects appear simple or complex , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[99]  Marco Colombetti,et al.  Robot shaping: developing situated agents through learning , 1992 .

[100]  F. de Vignemont,et al.  Body schema and body image--pros and cons. , 2010, Neuropsychologia.

[101]  Randall D. Beer,et al.  Parameter Space Structure of Continuous-Time Recurrent Neural Networks , 2006, Neural Computation.

[102]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .