The stable set problem: some structural properties and relaxations

This is a summary of the author’s PhD thesis supervised by Antonio Sassano and defended on June 4, 2012 at Sapienza Universita di Roma. The thesis is written in English and is available at http://padis.uniroma1.it/bitstream/10805/1598/1/ thesisCarlaMichini.pdf. The thesis deals with a polyhedral study of the fractional stable set polytope and aims mainly at establishing some new structural properties of this polytope. The fractional stable set polytope is the polytope defined by the linear relaxation of the edge formulation of the stable set problem. The edge formulation is defined by two-variable constraints, one for each edge of a graph G, expressing the simple condition that two adjacent nodes cannot belong to a stable set. Even if the fractional stable set polytope is a weak approximation of the stable set polytope, its simple geometrical structure provides deep theoretical insight as well as interesting algorithmic opportunities. Exploiting a graphic characterization of the bases, we first redefine simplex pivots in terms of simple graphic operations, that turn a given basis into an adjacent one. Among all possible pivots, we characterize degenerate and non-degenerate ones, and we differentiate those leading to an integer or to a fractional vertex. The graphic characterization of bases is crucial to prove another structural property of the fractional stable set polytope, concerning the adjacency of its vertices. In particular, we extend a necessary and sufficient condition due to Chvatal for adjacency of (integer) vertices of the stable set polytope to arbitrary (and possibly fractional) vertices of the fractional stable set polytope. These results lead us to prove that the Hirsch conjecture is true for the fractional stable set polytope, i.e. the combinatorial diameter of this fractional polytope is at most equal to the number of edges of the given graph. We actually refine

[1]  E. Balas,et al.  Pivot and Complement–A Heuristic for 0-1 Programming , 1980 .

[2]  A. Land,et al.  An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.

[3]  Wayne J. Pullan,et al.  Simple ingredients leading to very efficient heuristics for the maximum clique problem , 2008, J. Heuristics.

[4]  A. Gleason COVERS AND PACKINGS IN A FAMILY OF SETS , 2007 .

[5]  Fred W. Glover,et al.  The feasibility pump , 2005, Math. Program..

[6]  Francisco Santos,et al.  A counterexample to the Hirsch conjecture , 2010, ArXiv.

[7]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[8]  V. Klee,et al.  Thed-step conjecture for polyhedra of dimensiond<6 , 1967 .

[9]  Andrea Lodi,et al.  Primal cutting plane algorithms revisited , 2002, Math. Methods Oper. Res..

[10]  E. Balas,et al.  Set Partitioning: A survey , 1976 .

[11]  Ronald D. Armstrong,et al.  Strongly Polynomial Simplex Algorithm for Bipartite Vertex Packing , 1996, Discret. Appl. Math..

[12]  Jonathan Eckstein,et al.  Pivot, Cut, and Dive: a heuristic for 0-1 mixed integer programming , 2007, J. Heuristics.

[13]  Sanjeeb Dash,et al.  A heuristic to generate rank-1 GMI cuts , 2010, Math. Program. Comput..

[14]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[15]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[16]  Fred W. Glover,et al.  Solving zero-one mixed integer programming problems using tabu search , 1998, European Journal of Operational Research.

[17]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[18]  Olvi L. Mangasarian,et al.  Machine Learning via Polyhedral Concave Minimization , 1996 .

[19]  Manfred W. Padberg,et al.  On the facial structure of set packing polyhedra , 1973, Math. Program..

[20]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[21]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[22]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[23]  G. Nemhauser,et al.  An Efficient Primal Simplex Algorithm for Maximum Weighted Vertex Packing on Bipartite Graphs , 1982 .

[24]  Matteo Fischetti,et al.  Feasibility pump 2.0 , 2009, Math. Program. Comput..

[25]  Andras Hajnal,et al.  On the maximal number of independent circuits in a graph , 1963 .

[26]  Matteo Fischetti,et al.  Local branching , 2003, Math. Program..

[27]  Denis Naddef,et al.  The hirsch conjecture is true for (0, 1)-polytopes , 1989, Mathematical programming.

[28]  Tobias Achterberg,et al.  Constraint integer programming , 2007 .

[29]  Ellis L. Johnson,et al.  Some continuous functions related to corner polyhedra , 1972, Math. Program..

[30]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[31]  Geoffrey R. Grimmett An exact threshold theorem for random graphs and the node-packing problem , 1986, J. Comb. Theory, Ser. B.

[32]  William J. Cook,et al.  Chvátal closures for mixed integer programming problems , 1990, Math. Program..

[33]  Gérard Cornuéjols,et al.  Valid inequalities for mixed integer linear programs , 2007, Math. Program..

[34]  Timo Berthold,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Improving the Feasibility Pump Improving the Feasibility Pump , 2022 .

[35]  Richard D. Young A primal (all-integer) integer programming algorithm , 1965 .

[36]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[37]  Claude Le Pape,et al.  Exploring relaxation induced neighborhoods to improve MIP solutions , 2005, Math. Program..

[38]  R. D. Young A Simplified Primal (All-Integer) Integer Programming Algorithm , 1968, Oper. Res..

[39]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[40]  R. Gomory Some polyhedra related to combinatorial problems , 1969 .

[41]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[42]  Béla Bollobás,et al.  Random Graphs , 1985 .

[43]  John W. Chinneck,et al.  Feasibility and Infeasibility in Optimization:: Algorithms and Computational Methods , 2007 .

[44]  Michael Krivelevich,et al.  Triangle Factors in Random Graphs , 1997, Combinatorics, Probability and Computing.

[45]  Egon Balas,et al.  On the Set-Covering Problem: II. An Algorithm for Set Partitioning , 1972, Oper. Res..

[46]  G. Cornuéjols,et al.  Corner Polyhedron and Intersection Cuts , 2011 .

[47]  Leslie E. Trotter,et al.  Properties of vertex packing and independence system polyhedra , 1974, Math. Program..

[48]  Marcin Mucha Maximum Matching , 2008, Encyclopedia of Algorithms.

[49]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[50]  George L. Nemhauser,et al.  Simplex pivots on the set packing polytope , 1985, Math. Program..

[51]  Gérard Cornuéjols,et al.  Stable sets, corner polyhedra and the Chvátal closure , 2009, Oper. Res. Lett..

[52]  Robert E. Bixby,et al.  Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..

[53]  Egon Balas,et al.  On the Set-Covering Problem , 1972, Oper. Res..

[54]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[55]  Matteo Fischetti,et al.  How tight is the corner relaxation? , 2008, Discret. Optim..

[56]  Gérard Cornuéjols,et al.  Revival of the Gomory cuts in the 1990’s , 2007, Ann. Oper. Res..

[57]  J. Trotter Solution characteristics and algorithms for the vertex packing problem. , 1973 .

[58]  Wayne J. Pullan,et al.  Dynamic Local Search for the Maximum Clique Problem , 2011, J. Artif. Intell. Res..

[59]  Egon Balas,et al.  Octane: A New Heuristic for Pure 0-1 Programs , 2001, Oper. Res..

[60]  Ailsa H. Land,et al.  An Automatic Method of Solving Discrete Programming Problems , 1960 .

[61]  William R. Pulleyblank,et al.  Random near-regular graphs and the node packing problem , 1985 .

[62]  V. Chvátal On certain polytopes associated with graphs , 1975 .

[63]  Laurence A. Wolsey,et al.  A recursive procedure to generate all cuts for 0–1 mixed integer programs , 1990, Math. Program..