The stable set problem: some structural properties and relaxations
暂无分享,去创建一个
[1] E. Balas,et al. Pivot and Complement–A Heuristic for 0-1 Programming , 1980 .
[2] A. Land,et al. An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.
[3] Wayne J. Pullan,et al. Simple ingredients leading to very efficient heuristics for the maximum clique problem , 2008, J. Heuristics.
[4] A. Gleason. COVERS AND PACKINGS IN A FAMILY OF SETS , 2007 .
[5] Fred W. Glover,et al. The feasibility pump , 2005, Math. Program..
[6] Francisco Santos,et al. A counterexample to the Hirsch conjecture , 2010, ArXiv.
[7] Reinhard Diestel,et al. Graph Theory , 1997 .
[8] V. Klee,et al. Thed-step conjecture for polyhedra of dimensiond<6 , 1967 .
[9] Andrea Lodi,et al. Primal cutting plane algorithms revisited , 2002, Math. Methods Oper. Res..
[10] E. Balas,et al. Set Partitioning: A survey , 1976 .
[11] Ronald D. Armstrong,et al. Strongly Polynomial Simplex Algorithm for Bipartite Vertex Packing , 1996, Discret. Appl. Math..
[12] Jonathan Eckstein,et al. Pivot, Cut, and Dive: a heuristic for 0-1 mixed integer programming , 2007, J. Heuristics.
[13] Sanjeeb Dash,et al. A heuristic to generate rank-1 GMI cuts , 2010, Math. Program. Comput..
[14] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[15] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[16] Fred W. Glover,et al. Solving zero-one mixed integer programming problems using tabu search , 1998, European Journal of Operational Research.
[17] Ralph E. Gomory,et al. An algorithm for integer solutions to linear programs , 1958 .
[18] Olvi L. Mangasarian,et al. Machine Learning via Polyhedral Concave Minimization , 1996 .
[19] Manfred W. Padberg,et al. On the facial structure of set packing polyhedra , 1973, Math. Program..
[20] Patric R. J. Östergård,et al. A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..
[21] R. Horst,et al. Global Optimization: Deterministic Approaches , 1992 .
[22] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[23] G. Nemhauser,et al. An Efficient Primal Simplex Algorithm for Maximum Weighted Vertex Packing on Bipartite Graphs , 1982 .
[24] Matteo Fischetti,et al. Feasibility pump 2.0 , 2009, Math. Program. Comput..
[25] Andras Hajnal,et al. On the maximal number of independent circuits in a graph , 1963 .
[26] Matteo Fischetti,et al. Local branching , 2003, Math. Program..
[27] Denis Naddef,et al. The hirsch conjecture is true for (0, 1)-polytopes , 1989, Mathematical programming.
[28] Tobias Achterberg,et al. Constraint integer programming , 2007 .
[29] Ellis L. Johnson,et al. Some continuous functions related to corner polyhedra , 1972, Math. Program..
[30] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[31] Geoffrey R. Grimmett. An exact threshold theorem for random graphs and the node-packing problem , 1986, J. Comb. Theory, Ser. B.
[32] William J. Cook,et al. Chvátal closures for mixed integer programming problems , 1990, Math. Program..
[33] Gérard Cornuéjols,et al. Valid inequalities for mixed integer linear programs , 2007, Math. Program..
[34] Timo Berthold,et al. Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Improving the Feasibility Pump Improving the Feasibility Pump , 2022 .
[35] Richard D. Young. A primal (all-integer) integer programming algorithm , 1965 .
[36] Philip Wolfe,et al. An algorithm for quadratic programming , 1956 .
[37] Claude Le Pape,et al. Exploring relaxation induced neighborhoods to improve MIP solutions , 2005, Math. Program..
[38] R. D. Young. A Simplified Primal (All-Integer) Integer Programming Algorithm , 1968, Oper. Res..
[39] Ralph E. Gomory,et al. Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.
[40] R. Gomory. Some polyhedra related to combinatorial problems , 1969 .
[41] Leslie E. Trotter,et al. Vertex packings: Structural properties and algorithms , 1975, Math. Program..
[42] Béla Bollobás,et al. Random Graphs , 1985 .
[43] John W. Chinneck,et al. Feasibility and Infeasibility in Optimization:: Algorithms and Computational Methods , 2007 .
[44] Michael Krivelevich,et al. Triangle Factors in Random Graphs , 1997, Combinatorics, Probability and Computing.
[45] Egon Balas,et al. On the Set-Covering Problem: II. An Algorithm for Set Partitioning , 1972, Oper. Res..
[46] G. Cornuéjols,et al. Corner Polyhedron and Intersection Cuts , 2011 .
[47] Leslie E. Trotter,et al. Properties of vertex packing and independence system polyhedra , 1974, Math. Program..
[48] Marcin Mucha. Maximum Matching , 2008, Encyclopedia of Algorithms.
[49] J. A. Bondy,et al. Graph Theory with Applications , 1978 .
[50] George L. Nemhauser,et al. Simplex pivots on the set packing polytope , 1985, Math. Program..
[51] Gérard Cornuéjols,et al. Stable sets, corner polyhedra and the Chvátal closure , 2009, Oper. Res. Lett..
[52] Robert E. Bixby,et al. Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..
[53] Egon Balas,et al. On the Set-Covering Problem , 1972, Oper. Res..
[54] John N. Tsitsiklis,et al. Introduction to linear optimization , 1997, Athena scientific optimization and computation series.
[55] Matteo Fischetti,et al. How tight is the corner relaxation? , 2008, Discret. Optim..
[56] Gérard Cornuéjols,et al. Revival of the Gomory cuts in the 1990’s , 2007, Ann. Oper. Res..
[57] J. Trotter. Solution characteristics and algorithms for the vertex packing problem. , 1973 .
[58] Wayne J. Pullan,et al. Dynamic Local Search for the Maximum Clique Problem , 2011, J. Artif. Intell. Res..
[59] Egon Balas,et al. Octane: A New Heuristic for Pure 0-1 Programs , 2001, Oper. Res..
[60] Ailsa H. Land,et al. An Automatic Method of Solving Discrete Programming Problems , 1960 .
[61] William R. Pulleyblank,et al. Random near-regular graphs and the node packing problem , 1985 .
[62] V. Chvátal. On certain polytopes associated with graphs , 1975 .
[63] Laurence A. Wolsey,et al. A recursive procedure to generate all cuts for 0–1 mixed integer programs , 1990, Math. Program..